An aptamer-based method for the ultrasensitive fluorescence detection of C-reactive protein (CRP) was developed using the ribonuclease H (RNase H) assisted DNA recycling signal amplification strategy. In this assay, CRP can specifically bind to the aptamer of CRP and the DNA chain of P1 is released from the aptamer/P1 (Ap/P1) complexes. After the addition of the fluorescence labeled (5-FAM) RNA, P1 hybridizes with fluorescence labeled RNA to form a P1/RNA double strand. When RNase H is added, the RNA with fluorescence labeling in the double strand is specifically cut into nucleotide fragments, which cannot be adsorbed on the surface of the GO, so as to generate a fluorescence signal. In the absence of CRP, fluorescence labeled RNA cannot hybridize with P1 to form double strands, which is able to directly adsorb on the surface of GO, resulting in no fluorescence signal. The detection limit is as low as 0.01 ng mL, with a linear dynamic range from 50 pg mL to 100 ng mL. This sensor is able to detect CRP in spiked human serum, urine and saliva. Thus, it shows a great application prospect in disease diagnosis and prognosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063470 | PMC |
http://dx.doi.org/10.1039/c9ra01352k | DOI Listing |
Org Biomol Chem
January 2025
Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan.
In this study, we explored the chemical modification of toll-like receptor 9 (TLR9) agonist DNA using a highly fluorescent thymine analogue, ThexT, focusing on its structural and photophysical characteristics. ThexT-labelled CpG oligonucleotides effectively demonstrated intracellular localisation within macrophage cell lines. Notably, immunostimulatory activity varied depending on the site of ThexT incorporation within the TLR9 agonist sequence.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China.
Background: Multifunctional fluorescent probes have attracted much attention due to their wide range of applications and high utilization. In this study, a multifunctional fluorescent probe (E)-3-(4-(7-(4-(diphenylamino)phenyl)benzo[c] [1,2,5]thiadiazol-4-yl)phenyl)acrylic acid (TBAC) based on triphenylamine was designed and synthesized.
Results: The TBAC probe provided excellent aggregation-induced emission (AIE) performance and could be used as a fluorescent ink for printing.
Comput Struct Biotechnol J
December 2024
Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium.
Exposure of lung epithelia to aerosols is omnipresent. Chronic exposure to polluted air is a significant factor in the development of pulmonary diseases, which are among the top global causes of death, including COVID-19, chronic obstructive pulmonary disease, lung cancer, and tuberculosis. As efforts to prevent and treat lung diseases increase, the development of pulmonary drug delivery systems has become a major area of interest.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Huizhou Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.
Background: Adipose-derived stem cell (ADSC) transplantation presents a promising approach for osteoporosis (OP) treatment. However, the therapeutic efficacy of ADSCs is hindered by low post-transplantation survival rates and limited capacities for adhesion, migration, and differentiation. Icariin (ICA), the primary active compound of Epimedium, has been shown to promote cell proliferation and induce osteogenic differentiation; however, its specific effects on ADSC osteogenesis and the mechanisms by which ICA enhances osteoporosis treatment through cell transplantation remain inadequately understood.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
The Second Hospital of Dalian Medical University, Dalian, 116023, China.
The intricate morphology, physicochemical properties, and interacting proteins of lipid droplets (LDs) are associated with cell metabolism and related diseases. To uncover these layers of information, a solvatochromic and photosensitized LDs-targeted probe based on the furan-based D-D-π-A scaffold is developed to offer the following integrated functions. First, the turn-on fluorescence of the probe upon selectively binding to LDs allows for direct visualization of their location and morphology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!