Tolerance against butanol stress by disrupting succinylglutamate desuccinylase in .

RSC Adv

Guangxi Academy of Sciences Nanning 530007 China +86-771-2503940 +86-771-2503973.

Published: April 2019

: The four-carbon alcohol, butanol, is emerging as a promising biofuel and efforts have been undertaken to improve several microbial hosts for its production. However, most organisms have very low tolerance to -butanol (up to 2% (v/v)), limiting the economic viability of butanol production. Although genomic tools (transcriptomics, proteomics, and metabolomics) have been widely used to investigate the cellular response to butanol stress, the existing knowledge of the molecular mechanisms involved in butanol tolerance is limited, and strain improvement is difficult due to the complexity of the regulatory network. : In this study, a butanol-tolerant was constructed by disrupting gene (encoding succinylglutamate desuccinylase) to obtain higher butanol tolerance (increased by 34.6%). To clarify the tolerance mechanism, a metabolome analysis was also performed. As a result, a total of 73 metabolites (11 elevated and 62 decreased) were significantly changed. Most of the downregulated metabolites were mainly involved in the l-arginine degradation pathway, sulfate metabolic pathway, and 2-methylcitrate metabolic pathway. To further analyze the differential gene expression, a transcriptome was created. In total, 311 genes (113 upregulated and 198 downregulated) showed over a twofold difference and were associated with carbohydrate metabolism, energy metabolism, and ABC transporters. The integration of metabolomics and transcriptomics found that acid-activated glutaminase and the amino acid antiporter were significantly up-regulated, but the levels of l-arginine and glutamate were not significantly increased and decreased. Therefore, the changes of amino acids between strains BW25113 and BW25113-ΔastE were measured by amino acid analysis. The ability of a mutant strain against acid stress was also measured by the growth experiment under various pH conditions in the absence of butanol. : Based on the above experiments, it could be concluded that mutant BW25113-ΔastE mainly regulated intracellular pH-homeostasis to adapt to butanol stress, indicating the non-negligible impact of pH on microbial butanol tolerance, broadening our understanding of microbial butanol tolerance and providing a novel strategy for the rational engineering of a more robust butanol-producing host.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063396PMC
http://dx.doi.org/10.1039/c8ra09711aDOI Listing

Publication Analysis

Top Keywords

butanol tolerance
16
butanol stress
12
butanol
9
succinylglutamate desuccinylase
8
metabolic pathway
8
amino acid
8
microbial butanol
8
tolerance
7
tolerance butanol
4
stress
4

Similar Publications

Toxic Effects of Butanol in the Plane of the Cell Membrane.

Langmuir

January 2025

Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45220, United States.

Solvent toxicity limits -butanol fermentation titer, increasing the cost and energy consumption for subsequent separation processes and making biobased production more expensive and energy-intensive than petrochemical approaches. Amphiphilic solvents such as -butanol partition into the cell membrane of fermenting microorganisms, thinning the transverse structure, and eventually causing a loss of membrane potential and cell death. In this work, we demonstrate the deleterious effects of -butanol partitioning upon the lateral dimension of the membrane structure, called membrane domains or lipid rafts.

View Article and Find Full Text PDF

The unique fuel characteristics of butanol and the possibility of its microbial production make it one of the most desirable environmentally friendly substitutes for petroleum fuels. However, the highly toxic nature of 1-butanol to the bacterial strains makes it unprofitable for commercial production. By comparison, 2-butanol has similar fuel qualities, and despite the difficulties in its microbial synthesis, it holds promise because it may be less toxic.

View Article and Find Full Text PDF

Enhanced butanol tolerance and production from puerariae slag hydrolysate by Clostridium beijerinckii through metabolic engineering and process regulation strategies.

Bioresour Technol

January 2025

College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. Electronic address:

Article Synopsis
  • Butanol is identified as a valuable second-generation biomass energy source, but its production faces challenges like toxicity to fermentation strains and high feedstock costs.
  • The study focuses on enhancing butanol tolerance and production in the strain Clostridium beijerinckii D9 through metabolic engineering, leading to the development of a more efficient strain, D9/pykA.
  • Results showed that the new strain achieved a significant increase in butanol and total solvent production compared to the original strain, with optimal conditions boosting yield and revealing mechanisms to improve fermentation efficiency.
View Article and Find Full Text PDF
Article Synopsis
  • Current environmental issues and energy crises necessitate a switch in our energy sources.
  • The study presents a biohybrid system that merges light-activated quantum dots with engineered bacteria to boost renewable butanol production.
  • The results show that this system not only enhances butanol production but also efficiently utilizes solar energy and biomass, achieving notable increases in key metabolic ratios.
View Article and Find Full Text PDF

Many species of the genus are known to be highly tolerant to solvents and other environmental stressors. Based on phylogenomic and comparative genomic analyses, several species were recently transferred to a new genus named . Because of their unique enzymatic machinery, these strains are being discussed as novel biocatalysts in biotechnology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!