Role of defects on TiO/SiO composites for boosting photocatalytic water splitting.

RSC Adv

Research Group on Energy and Chemical Engineering Processing System, Department of Chemical Engineering, Institut Teknologi Bandung Bandung 40132 Indonesia

Published: July 2020

Defect engineering of semiconductor photocatalysts is considered as an evolving strategy to adjust their physiochemical properties and boost photoreactivity of the materials. Here, hydrogenation and UV light pre-treatment of TiO/SiO composite with the ratio of 9 : 1 (9TiO/1SiO) were conducted to generate Ti and non-bridging oxygen holes center (NBOHC) defects, respectively. The 9TiO/1SiO composite exhibited much higher photocatalytic water splitting than neat TiO and SiO as a consequence of the electronic structure effects induced by the defect sites. Electron paramagnetic resonance (EPR) indicated that hydrogenated and UV light pre-treated of 9TiO/1SiO boosted a higher density of Ti and NBOHC defect which could serve to suppress photogenerated electron-hole pair recombination and act as shallow donors to trap photoexcited electron. Overall, both defect sites in 9TiO/1SiO delivered advantageous characteristic relative to neat TiO and SiO with the finding clearly illustrating the value of defect engineering in enhancing photocatalytic performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055622PMC
http://dx.doi.org/10.1039/d0ra05745bDOI Listing

Publication Analysis

Top Keywords

photocatalytic water
8
water splitting
8
defect engineering
8
neat tio
8
tio sio
8
defect sites
8
defect
5
role defects
4
defects tio/sio
4
tio/sio composites
4

Similar Publications

The aim of the present work is to investigate the photocatalytic degradation of propyl paraben (propyl para-hydroxybenzoate, PrP) using CuO-ZnO-NPs photocatalyst followed by the identification of the oxidation by-products. The CuO-ZnO-NPs material, synthesized using a green chemistry approach, was used as a photocatalyst for the removal of PrP. The nanoparticles were characterized by XRD, XRF, diffuse reflectance spectroscopy, ATG/DTG, FTIR, SEM-EDX, BET and FRX techniques.

View Article and Find Full Text PDF

In this present investigation, plant-mediated synthesis of titanium oxide (TiO) nanoparticles was synthesized from seagrass (Thalassia hemprichi) using the hot plate combustion method (HPCM). Synthesized TiO nanoparticles optical, functional, structural, and morphology properties were analyzed by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). SEM analysis confirmed the spherical shape of the TiO nanoparticles were observed in various sizes, viz.

View Article and Find Full Text PDF

The world is now facing a water scarcity crisis due to waste, pollution, and uneven distribution of freshwater resources, which are limited. Thus, the creation of innovative, economical, and effective methods for purifying water is crucial. Here, the photo-assisted degradation of methylene blue (MB) dye under visible light and UV was achieved by using RGO photocatalyst loaded with ZnCuFeO in three different loaded 10%, 20%, and 30% called MRGO 10, MRGO 20, and MRGO 30.

View Article and Find Full Text PDF

Fluorine-expedited nitridation of layered perovskite SrTiO for visible-light-driven photocatalytic overall water splitting.

Nat Commun

January 2025

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China.

Photocatalytic overall water splitting is a promising approach for a sustainable hydrogen provision using solar energy. For sufficient solar energy utilization, this reaction ought to be operated based on visible-light-active semiconductors, which is very challenging. In this work, an F-expedited nitridation strategy is applied to modify the wide-bandgap semiconductor SrTiO for visible-light-driven photocatalytic overall water splitting.

View Article and Find Full Text PDF

Covalent semiconductors of the carbon nitride family are among the most promising systems to realize "artificial photosynthesis", that is exploiting synthetic materials which use sunlight as an energy source to split water into its elements or converting CO into added value chemicals. However, the role of surface interactions and electronic properties on the reaction mechanism remain still elusive. Here, we use in-situ spectroscopic techniques that enable monitoring surface interactions in carbon nitride under artificial photosynthetic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!