The CO oxidation mechanisms over three different MnN-doped graphene (MnNC: MnNC-hex, MnNC-opp, MnNC-pen) structures were investigated through first-principles calculations. The vacancy in graphene can strongly stabilize Mn atoms and make them positively charged, which promotes O activation and weakens CO adsorption. Hence, CO oxidation activity is enhanced and the catalyst is prevented from being poisoned. CO oxidation reaction (COOR) on MnNC along the Eley-Rideal (ER) mechanism and the Langmuir-Hinshelwood (LH) mechanism will leave one O atom on the Mn atom, which is difficult to react with isolated CO. COOR on MnNC-opp along the ER mechanism and termolecular Eley-Rideal (TER) mechanism need overcome low energy barriers in the rate limiting step (RLS), which are 0.544 and 0.342 eV, respectively. The oxidation of CO along TER mechanism on MnNC-opp is the best reaction pathway with smallest energy barrier. Therefore, the MnNC-opp is an efficient catalysis and this study has a guiding role in designing effective catalyst for CO oxidation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055664 | PMC |
http://dx.doi.org/10.1039/d0ra05287f | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
A TiO/CdS heterostructure has been widely investigated as a potential photoanode for photoelectrochemical (PEC) water splitting for hydrogen evolution. However, the efficiency and stability still remain challenging due to the sluggish reaction dynamics for water oxidation and easy photocorrosion of CdS. Here we report a ternary TiO/CdS/IrO heterostructure with IrO as a hole transport layer for PEC glycerol oxidation coupled with hydrogen evolution.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.
The cycloaddition of CO to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemistry and Chemical Engineering, Institute of Materials Sciences and Engineering, Institute of Clean Energy and Advanced Nanocatalysis (iClean), Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Maanshan 243002, China.
Herein, the reduction of the Cu oxidation state during the CO electro-reduction reaction (CORR) is effectively inhibited by depositing C supramolecular clusters onto the Cu(OH)F surface. By utilizing the unique electronic buffering capacity of C, a significant number of Cu/Cu sites are created, leading to a remarkable faradaic efficiency of C products up to 76.9% and exceptional stability.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.
Proton exchange membrane fuel cells (PEMFCs) are developing into very meaningful clean energy to fundamentally address environmental pollution. Among which the most studied Nafion series membranes are limited under large-scale use, and some strong oxidizing groups such as hydrogen peroxide will attack the structure of Nafion, shortening the lifespan of PEMFCs. Therefore, it is crucial to develop a proton-conductive material with strong stability and broad application.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France.
Fenpyrazamine (FPA) is a widely used fungicide in agriculture to control fungal diseases, but its environmental degradation by oxidants and the formation of potential degradation products remain unexplored. This study investigates the oxidation of FPA by hydroxyl radicals (HO˙) using density functional theory (DFT) calculations at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p) level of theory. Three standard oxidation mechanisms, including formal hydrogen transfer (FHT), radical adduct formation (RAF), and single electron transfer (SET), were evaluated in the aqueous phase, with reaction kinetics analyzed over a temperature range of 283-333 K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!