Similar Publications

Near-infrared fluorescence imaging platform with ultra large Stokes shift for monitoring and bioimaging of hydrogen peroxide in the process of ferroptosis.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

Hydrogen peroxide (HO), as a strong oxidant, is crucial for the aerobic metabolism of organisms and is intricately linked to the onset of numerous diseases. Real-time monitor HO levels in the environment and biological microenvironment is of paramount importance for environment protection and elucidating HO-related physiological and pathological processes. In this study, a novel near-infrared fluorescence imaging platform was developed and a near-infrared fluorescent probe FBMH was constructed based on the platform with photoinduced electron transfer mechanism.

View Article and Find Full Text PDF

DNA Tetrahedron-enhanced single-particle counting integrated with cascaded CRISPR Program for ultrasensitive dual RNAs logic sensing.

J Colloid Interface Sci

December 2024

National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China.

CRISPR-Cas-based technology, emerging as a leading platform for molecular assays, has been extensively researched and applied in bioanalysis. However, achieving simultaneous and highly sensitive detection of multiple nucleic acid targets remains a significant challenge for most current CRISPR-Cas systems. Herein, a CRISPR Cas12a based calibratable single particle counting-mediated biosensor was constructed for dual RNAs logic and ultra-sensitive detection in one tube based on DNA Tetrahedron (DTN)-interface supported fluorescent particle probes coupled with a novel synergistic cascaded strategy between CRISPR Cas13a system and strand displacement amplification (SDA).

View Article and Find Full Text PDF

Purpose: We are developing a three-dimensional X-ray fluorescence computed tomography (3D XFCT) system using non-radioactive-labeled compounds for preclinical studies as a new modality that provides images of biological functions. Improvements in image quality and detection limits are required for the in vivo imaging. The aim of this study was to improve the quality of XFCT images by applying a deep image prior (DIP), which is a type of convolutional neural network, to projection images as a pre-denoising method, and then compare with DIP post-denoising.

View Article and Find Full Text PDF

Iron overload (IO) was considered to be a risk factor for cartilage degradation in knee osteoarthritis (KOA) advancement. However, few drugs were found to improve cartilage degeneration by alleviating multiple cell death induced by the impaired iron level of the knee joints. We aimed to elucidate that Arctiin (ARC) plays a role in managing KOA caused by accumulated iron levels by restoring chondrocyte apoptosis and ferroptosis.

View Article and Find Full Text PDF

A Drosophila Model of Mucopolysaccharidosis IIIB.

Genetics

December 2024

Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA.

Mucopolysaccharidosis type IIIB (MPS IIIB) is a rare lysosomal storage disorder caused by defects in alpha-N-acetylglucosaminidase (NAGLU) and characterized by severe effects in the central nervous system. Mutations in NAGLU cause accumulation of partially degraded heparan sulfate in lysosomes. The consequences of these mutations on whole genome gene expression and their causal relationships to neural degeneration remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!