Ni, Pt and a mixture of Ni and Pt supported on ZnO-rods were evaluated in autothermal steam reforming of methanol (ASRM) for hydrogen production as a function of the reaction temperature. The catalytic materials were characterized by SEM-EDS, XRD, TEM, HRTEM, TPR and BET. Analysis by SEM and TEM showed structural modifications on the surface of the ZnO rods after Ni impregnation. The reactivity of the catalytic materials in the range of 200-500 °C showed that the bimetallic sample had better catalytic activity among all the catalysts studied. This finding could be associated to PtZn and NiZn alloys present in this catalyst, which were identified by XRD and HRTEM analyses. Catalyst characterization by XRD after the catalytic testing showed that the intermetallic PtZn phase was stable during the reaction in the Pt/ZnO-rod sample. The cubic Ni-Zn structure identified in the Ni/ZnO-rod sample was transformed to Zn-Ni-O and metallic Ni phases, respectively. On the bimetallic PtNi/ZnO-rod sample, the cubic Ni-Zn structure remained, although the tetragonal NiZn structure is unstable and was destroyed during the ASRM reaction and then a new phase of NiPt emerged. The promotion effect of Pt and/or Ni on the ZnO-rod was clearly shown.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057812 | PMC |
http://dx.doi.org/10.1039/d0ra06181f | DOI Listing |
J Food Sci
January 2025
College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China.
Pleurotus ostreatus is a nutrient-dense edible fungus renowned for its delicate texture, appealing flavor, and numerous potential health benefits. Simultaneous extraction within the framework of food resource processing facilitates the concurrent isolation and analysis of multiple target compounds. In this study, an ethanol/salt aqueous two-phase system (ATPS) was employed to extract polysaccharides (PS) and proteins from P.
View Article and Find Full Text PDFChemistry
January 2025
Indian Institute of Science Education and Research Bhopal Department of Chemistry, Chemistry, Room No. 226, Academic Block - 2, Indore By-pass Road, Bhauri, 462066, Bhopal, INDIA.
Unraveling the electronic structure of metal complexes can bring various catalytic possibilities for hydrogen evolution reaction (HER). However, the electronic effect of metal and ligands modulating and switching the reaction center for HER has yet to be comprehensively analyzed. Herein, we report nickel selenoether electrocatalysts which show tunable reaction centers (nickel or ligand) for HER using mild weak acetic acid in less deprotonating DMF solvent.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
The Orange Carotenoid Protein (OCP) is a unique water-soluble photoactive protein that plays a critical role in regulating the balance between light harvesting and photoprotective responses in cyanobacteria. The challenge in understanding OCP´s photoactivation mechanism stems from the heterogeneity of the initial configurations of its embedded ketocarotenoid, which in the dark-adapted state can form up to two hydrogen bonds to critical amino acids in the protein's C-terminal domain, and the extremely low quantum yield of primary photoproduct formation. While a series of experiments involving point mutations within these contacts helped us to identify these challenges, they did not resolve them.
View Article and Find Full Text PDFBiodegradation
January 2025
Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung City, 407102, Taiwan.
Bioplastics, particularly polyhydroxyalkanoates (PHAs), are emerging as promising alternatives to traditional materials due to their biodegradability. This study focuses on the production of PHAs as bioplastics using effluent from hydrogen production in a two-stage Biohythane Pilot Plant, which provides a low-cost substrate. The aim is to optimize production conditions, with Cupriavidus necator TISTR 1335 being used as the PHA producer.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
Groundnut fodder was utilized as a bioresource for the production of cellulases through solid state fermentation (SSF). Aspergillus unguis was initially grown on modified groundnut fodder for cellulase production and the fodder was hydrolyzed by the crude cellulase extract into fermentable hydrolyzate. The highest titer of Filter paperase (FPase), Carboxymethyl cellulase (CMCase), β-glucosidase, and protein content were found to be 11.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!