Coal spontaneous combustion (CSC) is a major problem in coal mining. In the vicinity of underground goaf, secondary or repeated oxidation processes of the residual coal inevitably occur, increasing the risk of coal fires. In this study, the thermal reaction behaviour of two types of raw coal samples and three preoxidised coal samples with different oxidation temperatures (80, 130, and 180 °C) were investigated. The physical and chemical properties of the samples were measured using thermogravimetric analyser-Fourier transform infrared spectroscopy (TGA-FTIR) with heating rates of 1.0, 2.0, 5.0, and 10.0 °C min. According to the characteristic temperatures in the heating processes, the entire CSC procedure can be divided into three stages: oxidation, combustion, and burnout. The results indicated that the aliphatic side chain lengths of preoxidised coal were shorter, and the number of branched aliphatic side chains was lower than that of raw coal. Furthermore, the model for the mechanism of preoxidised coal differed from that of raw coal. Average values of the apparent activation energy of the preoxidised coal samples were lower than those of the raw coal samples. Therefore, compared with raw coal, preoxidised coal requires less energy to react and more readily undergoes spontaneous combustion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055092 | PMC |
http://dx.doi.org/10.1039/d0ra03310c | DOI Listing |
Sci Rep
January 2025
School of Safety and Management Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
The extraction of coal seams with high gas content and low permeability presents significant challenges, particularly due to the extended period required for gas extraction to meet safety standards and the inherently low extraction efficiency. Hydraulic fracturing technology, widely employed in the permeability enhancement of soft and low-permeability coal seams, serves as a key intervention. This study focuses on the high-rank raw coal from the No.
View Article and Find Full Text PDFPLoS One
January 2025
College of Safety Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, China.
To investigate the impact of the oxidation temperature and variations in airflow conditions on coal spontaneous combustion characteristics, pre-oxidized coal samples were prepared using a programmed temperature rise method. Synchronous thermal analysis experiments and Fourier transform infrared spectroscopy were conducted to explore changes in the thermal effects and functional group content of the coal samples, respectively. The results indicate that variations in pre-oxidation conditions primarily in fluence the activation temperature and maximum weight loss temperature of the coal samples, while exerting a lesser impact on the critical temperature and ignition point.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Safety Engineering, Shanxi Institute of Energy, Jinzhong 030600, China.
In order to accurately investigate the key microstructures in the spontaneous combustion exothermic process of coal, an ultrasonic extraction method was employed to extract the coal, and the complex microscopic groups within it were stripped and studied. On this basis, Fourier transform infrared spectroscopy and differential scanning calorimetry were employed to assess the content of microscopic groups and the exothermic characteristics of the raw and extracted coal samples. The findings indicated that toluene and methanol demonstrated a notable capacity for extracting aromatic and aliphatic hydrocarbon compounds from coal, whereas -methyl pyrrolidone (NMP) and ethylenediamine (EDA) exhibited a pronounced effect on oxygen-containing functional groups and hydroxyl groups.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210, Mongolia. Electronic address:
Langmuir
January 2025
School of Mechanical and Mining Engineering, University of Queensland, Brisbane 4072, Australia.
Coalbed methane (CBM) reservoir modification based on chemical solvent treatment could change the coal microstructure, which further affects the adsorption capacity and flow characteristics of this clean energy. Coal samples were extracted by tetrahydrofuran (THF), carbon disulfide (CS), and hydrochloric acid (HCl). Low-pressure nitrogen adsorption, carbon dioxide adsorption, Fourier transform infrared spectroscopy, and methane isothermal adsorption test were adopted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!