A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dataset of high-throughput ligand screening against the RNA Packaging Signals regulating Hepatitis B Virus nucleocapsid formation. | LitMetric

Multiple ssRNA viruses which infect bacteria, plants or humans use RNA Packaging Signal (PS)-mediated regulation during assembly to package their genomes faithfully and efficiently. PSs typically comprise short nucleotide recognition motifs, most often presented in the unpaired region of RNA stem-loops, and often bind their cognate coat proteins (CPs) with nanomolar affinity. PSs identified to date are resilient in the face of the typical error prone replication of their virus-coded polymerases, making them potential drug targets. An immobilised array of small molecular weight, drug-like compounds was panned against a fluorescently-labelled oligonucleotide encompassing the most conserved Hepatitis B Virus (HBV) PS, PS1, known to be a major determinant in nucleocapsid formation. This identified > 70 compounds that bind PS1 uniquely in the array. The commercially available 66 of these were tested for their potential effect(s) on HBV nucleocapsid-like particle (NCP) assembly , which identified potent assembly inhibitors. Here, we describe a high-throughput screen for such effects using employing fluorescence anisotropy in a 96-well microplate format. HBV genomic RNAs (gRNA) and short oligonucleotides encompassing PS1 were 5' labelled with an Alexa Fluor 488 dye. Excess (with respect to stoichiometric  = 4 NCP formation) HBV core protein (Cp) dimers were titrated robotically into solutions containing each of these RNAs stepwise, using a Biomek 4000 liquid handling robot. The anisotropy values of these mixtures were monitored using a POLARstar microplate reader. NCP-like structures were challenged with RNase A to identify reactions that did not result in complete NCP formation. The results imply that ∼50% of the compounds prevent complete NCP formation, highlighting both PS-meditated assembly and the PS-binding compounds as potential directly-acting anti-virals with a novel molecular target. Importantly, this method allows high-throughput screening for assembly inhibitors in this major human pathogen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065705PMC
http://dx.doi.org/10.1016/j.dib.2022.108206DOI Listing

Publication Analysis

Top Keywords

ncp formation
12
rna packaging
8
hepatitis virus
8
nucleocapsid formation
8
assembly inhibitors
8
complete ncp
8
formation
5
assembly
5
dataset high-throughput
4
high-throughput ligand
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!