A novel approach, combining a microbial fuel cell (MFC) with an integrated vertical flow constructed wetland (IVCW), was developed, and its ability to simultaneously produce electrical energy while treating swine wastewater was verified. The system combined the singular water flow path of a traditional vertical flow constructed wetland (upflow and downflow)-microbial fuel cell (CW-MFC), which demonstrates better characteristics in the aerobic, anoxic, and anaerobic regions. It not only enhanced the anti-pollution load ability and the organic compound removal effect, but also improved the gradient difference in the redox potential of the system. The results showed that the structure and substrate distribution in the device could both improve swine wastewater treatment and increase bioelectricity generation capabilities. The average chemical oxygen demand (COD) and ammonia nitrogen (NH -N) removal efficiencies were as high as 79.65% and 77.5%, respectively. Long-term and stable bioelectricity generation was achieved under continuous flow conditions. The peak values of the output voltage and power density were 713 mV and 456 mW m. The activated carbon layer at the bottom of this system provided a larger surface for the growth of microbes. It showed significant promotion of the relative abundance of electrochemically active bacteria, which might result in the increase of bioelectricity generation in integrated vertical flow constructed wetland-microbial fuel cells (IVCW-MFCs). The electrochemically active bacteria, and , were detected in the anodic biofilm by high-throughput sequencing analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060656PMC
http://dx.doi.org/10.1039/c8ra10625hDOI Listing

Publication Analysis

Top Keywords

constructed wetland
12
vertical flow
12
flow constructed
12
bioelectricity generation
12
microbial fuel
8
fuel cells
8
fuel cell
8
integrated vertical
8
swine wastewater
8
increase bioelectricity
8

Similar Publications

The complex topography of the mountain cities leads to uneven distribution of land resources. Currently, available studies mainly focuse on land use and landscape patterns (LU and LP) in plains or plateaus. Thus, it is necessary to carry out an analysis of the drivers of changes in LU and LP in mountain cities.

View Article and Find Full Text PDF

Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.

View Article and Find Full Text PDF

Structure of Plant Populations in Constructed Wetlands and Their Ability for Water Purification.

Plants (Basel)

January 2025

Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.

In constructed wetlands (CWs) with multiple plant communities, population structure may change over time and these variations may ultimately influence water quality. However, in CWs with multiple plant communities, it is still unclear how population structure may change over time and how these variations ultimately influence water quality. Here, we established a CW featuring multiple plant species within a polder to investigate the variation in plant population structure and wastewater treatment effect for drainage water over the course of one year.

View Article and Find Full Text PDF

Increasing nitrogen (N) addition induces soil nutrient imbalances and is recognized as a major regulator of soil microbial communities. However, how soil bacterial abundance, diversity, and community composition respond to exogenous N addition in nutrient-poor and generally N-limited regions remains understudied. In this study, we investigated the effects of short-term exogenous N additions on soil bacterial communities using quantitative polymerase chain reaction (PCR) and Illumina Miseq sequencing in an in situ N addition field experiment.

View Article and Find Full Text PDF

Iron-based constructed wetlands (ICWs) displayed great potential in deep nitrogen elimination for low-polluted wastewater. However, the unsatisfactory denitrification performance caused by the limited solubility and sluggish activity of iron substrates needs to be improved in an eco-effective manner. To fill this gap, the bioavailability of iron substrates (iron scraps) affected by wetland biomass-derived carbon materials with potential conductivity were explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!