Phosphorus (P) is a nutrient necessary for agricultural production and a potential originator for eutrophication in water bodies, resulting in qualitative changes; it may also affect the aquatic ecosystem and human health. In addition, as a finite resource, the importance of studying strategies to remove it from water is evident, thus making possible its recycling. Many studies have used powdered materials, including biochars, for P water decontamination; however, the difficulty of separating and collecting these materials from water after adsorption may be difficult. Therefore, using hybrid materials in which the fine particles (powder) are impregnated into larger, solid particles by means of a polymeric host can facilitate collection and reuse after P adsorption. In this context, this study aimed the synthesis and characterization of a new hybrid film formed by the biopolymer cellulose acetate (CA) and biochar (FAC-B) for P adsorption in aqueous solution. We obtained biochar from the pyrolysis of carrot residue ( L.) and doped it with magnesium. As a biodegradable polymer and the most abundant natural polysaccharide in the environment, using CA as a biochar support material is an environmentally friendly alternative. We prepared the CA film with the casting method, and the biochar was inserted into the filmogenic solution in the same amount as the CA. The film was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), molecular absorption spectroscopy in the infrared region with an attenuated total reflectance (FTIR/ATR) accessory, and X-ray Photoelectron Spectroscopy (XPS). We evaluated the thickness, weight, density, HO uptake and HO solubility of the produced FAC-B. The maximum adsorption capacity of P by FAC-B was 21.57 mg g, in agreement with the Langmuir isotherm model. The adsorption value suggests that the film has the potential to be used as an efficient P adsorbent in water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060768PMC
http://dx.doi.org/10.1039/c8ra06655hDOI Listing

Publication Analysis

Top Keywords

adsorption aqueous
8
aqueous solution
8
adsorption
6
film
5
water
5
film based
4
based magnesium
4
magnesium impregnated
4
impregnated biochar/cellulose
4
biochar/cellulose acetate
4

Similar Publications

Mechanistic Analysis of Peptide Affinity to Single-Walled Carbon Nanotubes and Volatile Organic Compounds Using Chemiresistors.

ACS Appl Mater Interfaces

December 2024

Air Force Research Laboratory, 711th Human Performance Wing, Wright-Patterson Air Force Base, Wright-Patterson AFB, Ohio 45433, United States.

Peptides, due to their diverse and controllable properties, are used as both liquid and gas phase recognition elements for both biological and chemical targets. While it is well understood how binding of a peptide to a biomolecule can be converted into a sensing event, there is not the same mechanistic level of understanding with regard to how peptides modulate the selectivity of semiconductor/conductor-based gas sensors. Notably, a rational, mechanistic study has not yet been performed to correlate peptide properties to the sensor response for volatile organic compounds (VOCs) as a function of chemical properties.

View Article and Find Full Text PDF

Regulating Zn Deposition via Honeycomb-like Covalent Organic Frameworks for Stable Zn Metal Anodes.

ACS Appl Mater Interfaces

December 2024

Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.

The irreversible chemistry of the Zn anode, attributed to parasitic reactions and the growth of zinc dendrites, is the bottleneck in the commercialization of aqueous zinc-ion batteries. Herein, an efficient strategy via constructing an organic protective layer configured with a honeycomb-like globular-covalent organic framework (G-COF) was constructed to enhance the interfacial stability of Zn anodes. Theoretical analyses disclose that the methoxy and imine groups in G-COF have more negative adsorption energy and electrostatic potential distribution, favorable Zn adsorption, and diffusion.

View Article and Find Full Text PDF

Synthesis of triangular lignin photonic crystal nanoparticles: Investigating solvent effects and dialysis optimization.

Int J Biol Macromol

December 2024

Composites and Nanocomposites Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, Rabat 10100, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, 43150 Ben Guerir, Morocco. Electronic address:

Article Synopsis
  • Researchers have developed a new method to create triangular lignin nanoparticles (LNPs), improving on traditional spherical shapes, for potential use in optical applications.
  • This green technique employs solvent shifting and acid precipitation, allowing for controlled structural changes in the nanoparticles.
  • The resulting LNPs exhibit good hydrophobic properties, excellent UV-blocking efficiency, and long-term stability in aqueous suspensions, making them promising for applications like sunscreen.
View Article and Find Full Text PDF

Computational techniques have been used to analyze the molecules of 10-hydroxycoronahydine (HC) and voacangine hydroxyindolenine (VH) molecules with the aim of studying the effect of base and temperature on their interaction mechanisms during synthesis green magnetite nanoparticles. Density functional theory (DFT) descriptors such as: energy gap, overall reactivity descriptors, dipole moment and adsorption energy have all been explored in depth to understand the nature of the interaction. The DFT results showed that the molecules studied (HC and VH) are interactive and stable in an aqueous medium, due to the fact that these molecules have free electronic doublets on the nitrogen atom and the bond of the aromatic ring.

View Article and Find Full Text PDF

Molecular Dynamics Study of Chitosan Adsorption at a Silica Surface.

J Phys Chem C Nanomater Interfaces

December 2024

Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, U.K.

Chitosan is a nontoxic biopolymer with many potential biomedical and material applications due to its biodegradability, biocompatibility, and antimicrobial properties. Here, fully atomistic molecular dynamics simulations and enhanced sampling methods have been used to study the adsorption mechanism of chitosan oligomers on a silica surface from an aqueous solution. The free energy of adsorption of chitosan on a silica surface was calculated to be 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!