Computational investigation of the Mg-ion conductivity and phase stability of MgZr(PO).

RSC Adv

Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan.

Published: April 2019

Solid electrolyte materials exhibiting high Mg-ion conductivity are required to develop Mg-ion batteries. In this study, we focused on a Mg-ion-conducting solid phosphate based electrolyte, MgZr(PO) (MZP), and evaluated the ionic conductivity of NASICON-type and β-iron sulfate-type MgZr(PO) structures density functional theory calculations. The calculations suggest that the migration energy of Mg is 0.63 eV for the NASICON-type structure and 0.71 eV for the β-iron sulfate-type one, and the NASICON-type structure has higher ion conductivity. Although the NASICON-type MZP structure has not been experimentally realised, there is only an energy difference of 14 meV per atom with respect to that of the β-iron sulfate-type structure. Therefore, in order to develop a synthesis method for the NASICON-type structure, we investigated pressure- and temperature-dependent variations in the free energy of formation using density functional perturbation theory calculations. The results suggest that the formation of the NASICON-type structure is disfavoured under the 0-2000 K and 0-20 GPa conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063713PMC
http://dx.doi.org/10.1039/c9ra00513gDOI Listing

Publication Analysis

Top Keywords

nasicon-type structure
16
β-iron sulfate-type
12
mg-ion conductivity
8
conductivity nasicon-type
8
density functional
8
theory calculations
8
nasicon-type
6
structure
6
computational investigation
4
investigation mg-ion
4

Similar Publications

Ternary NASICON-Type NaVMnFe(PO)/NC@CNTs Cathode with Reversible Multielectron Reaction and Long Life for Na-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China.

Na superionic conductor (NASICON)-structure NaMnV(PO) (NVMP) electrode materials reveal highly attractive application prospects due to ultrahigh energy density originating from two-electron reactions. Nevertheless, NVMP also encounters challenges with its poor electronic conductivity, Mn dissolution, and Jahn-Teller distortion. To address this issue, utilizing N-doped carbon layers and carbon nanotubes (CNTs) for dual encapsulation enhances the material's electronic conductivity, creating an effective electron transport network that promotes the rapid diffusion and storage of Na.

View Article and Find Full Text PDF

Avoiding severe structural distortion, irreversible phase transition, and realizing the stabilized multielectron redox are vital for promoting the development of high-performance NASICON-type cathode materials for sodium-ion batteries (SIBs). Herein, a high-entropy NaVFeTiMnCr(PO) (HE-NaTMP) cathode material is prepared by ultrafast high-temperature shock, which inhibits the possibility of phase separation and achieves reversible and stable multielectron transfer of 2.4/2.

View Article and Find Full Text PDF

Open frameworks in the NaMn(PO)F fluoro-pyrophosphates system.

Dalton Trans

January 2025

School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China.

Three new sodium manganese fluoro-pyrophosphate compounds, namely, NaMn(PO)F (I), NaMn(PO)F (II), and NaMn(PO)F (III), have been synthesized by heating a mixture of NaPF, NaPOF or NaHPO with different Mn sources in NaNO and KNO fluxes. The structures of the title compounds were characterized single-crystal X-ray diffraction (XRD). II is characteristic of a shell of Na ions that encloses one [Mn(PO)F] unit, whereas I and III reveal three-dimensional (3D) frameworks that consist of MnO, Mn/NaOF octahedra or MnO octahedra and distorted MnO square pyramids with PO units, where Na cations reside in different-membered ring one-dimensional (1D) tunnels.

View Article and Find Full Text PDF

Mn-containing sodium superionic conductor (NASICON) compounds have shown considerable potential as cathode for sodium-ion batteries (SIBs) owing to higher working voltage (V/V: 3.9 V), lower cost, and lower toxicity compared to full vanadium-based NASICON NaV(PO). Taking NaVMn(PO) (NVMP) as an example, its practical application is still restricted by poor electronic conductivity, sluggish intrinsic Na diffusion, and poor high-voltage stability.

View Article and Find Full Text PDF

High-entropy NASICON-Type LiAlTiZrSnTa(PO) with high electrochemical stability for lithium-ion batteries.

J Colloid Interface Sci

December 2024

Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan; High Entropy Materials Center, Hsinchu 300044, Taiwan. Electronic address:

LiAlTi (PO) (LATP) is a promising NASICON-type solid electrolyte for all-solid-state lithium-ion batteries (ASSLIBs) owing to its high ionic conductivity, low cost, and stability in ambient atmosphere. However, the electrochemical stability of LATP suffers upon contact with lithium metals, resulting in a reduction of Ti to Ti in its structure. This limitation necessitates interface modification processes, hindering its use in lithium-ion batteries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!