Prussian blue analogs (PBAs) are attractive cathode candidates for high energy density, including long life-cycle rechargeable batteries, due to their non-toxicity, facile synthesis techniques and low cost. Nevertheless, traditionally synthesized PBAs tend to have a flawed crystal structure with a large amount of [Fe(CN)] openings and the presence of crystal water in the framework; therefore the specific capacity achieved has continuously been low with poor cycling stability. Herein, we demonstrate low-defect and sodium-enriched nickel hexacyanoferrate nanocrystals synthesized by a facile low-speed co-precipitation technique assisted by a chelating agent to overcome these problems. As a consequence, the prepared high-quality nickel hexacyanoferrate (HQ-NiHCF) exhibited a high specific capacity of 80 mA h g at 15 mA g (with a theoretical capacity of ∼85 mA h g), maintaining a notable cycling stability (78 mA h g at 170 mA g current density) without noticeable fading in capacity retention after 1200 cycles. This low-speed synthesis strategy for PBA-based electrode materials could be also extended to other energy storage materials to fabricate high-performance rechargeable batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055524 | PMC |
http://dx.doi.org/10.1039/d0ra03490h | DOI Listing |
Molecules
January 2025
Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.
This research presents a simple procedure for chemically modifying yeast () cells with nickel hexacyanoferrate (NiHCF) and ferric hexacyanoferrate, also known as Prussian blue (PB), to increase the conductivity of the yeast cell wall. Using linear sweep voltammetry, NiHCF-modified yeast and PB-modified yeast (NiHCF/yeast and PB/yeast, respectively) were found to have better cell wall conductivity in [Fe(CN)] and glucose-containing phosphate-buffered solution than unmodified yeast. Spectrophotometric analysis showed that the modification of yeast cells with NiHCF had a less harmful effect on yeast cell viability than the modification of yeast cells with PB.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Materials and Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.
Seawater batteries (SWBs) are green aqueous power sources with great potential in marine applications. So far, SWBs are mainly built on rigid substrates, which hinders their adaptability to marine textile applications. Herein, we constructed a rechargeable yarn-shaped SWB consisting of nickel hexacyanoferrate (Ni-HCF)-modified carbon yarn (positive electrode), glass fiber diaphragm, and polyimide (PI)-modified carbon yarn (negative electrode).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemical Engineering, Hanyang University (Seoul Campus), 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
J Hazard Mater
November 2024
School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea. Electronic address:
Monitoring radioactive cesium ions (Cs) in seawater is vital for environmental safety but remains challenging due to limitations in the accessibility, stability, and selectivity of traditional methods. This study presents an innovative approach that combines electrochemical voltammetry using nickel hexacyanoferrate (NiHCF) thin-film electrode with machine learning (ML) to enable accurate and portable detection of Cs. Optimizing the fabrication of NiHCF thin-film electrodes enabled the development of a robust sensor that generates cyclic voltammograms (CVs) sensitive to Cs⁺ concentrations as low as 1 ppb in synthetic seawater and 10 ppb in real seawater, with subtle changes in CV patterns caused by trace Cs⁺ effectively identified and analyzed using ML.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab 144008, India. Electronic address:
Herein, nitrogen-doped nickel hexacyanoferrate (N@NiHCF) nanoparticles were prepared via co-precipitation and incorporated in guar gum (GG)-Xanthan gum (Xa) based-polymeric-matrix (GGXa@N@NiHCF) for efficient removal of rose bengal (RB) dye and nonyl phenol (NP) pollutants under sunlight. PXRD, FESEM, XPS, and FTIR analysis verified successful integration of N@NiHCF nanoparticles into GGXa matrix. Scherrer and Williamson-Hall equations estimated average-crystallite sizes of GGXa@N@NiHCF nanoparticles to be 16.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!