Electrospun polymer fibers have garnered substantial importance in regenerative medicine owing to their intrinsic 3D topography, extracellular matrix microenvironment, biochemical flexibility, and mechanical support. In particular, a material's nano-topography can have a significant effect on cellular responses, including adhesion, proliferation, differentiation, and migration. In this study, poly(l-lactic acid) (PLLA), a biodegradable polymer with excellent biocompatibility was electrospun into fibers with either smooth or porous topologies. The scaffolds were further modified and biofunctionalized with 0.01% and 0.1% collagen to enhance bioactivity and improve cellular interactions. Human keratinocytes (HaCaTs) and fibroblasts (human foreskin fibroblasts-HFF) were cultured on the scaffolds using a modified co-culture technique, where keratinocytes were grown on the dorsal plane for 5 days, followed by flipping, seeding with fibroblasts on the ventral plane and culturing for a further 5 days. Following this, cellular adhesion of the skin cells on both the unmodified and collagen-modified scaffolds (smooth and porous) was performed using scanning electron microscopy (SEM) and immunofluorescence. Distinct outcomes were observed with the unmodified smooth scaffolds showing superior cell adhesion than the porous scaffolds. Modification of the porous and smooth scaffolds with 0.1% collagen enhanced the adhesion and migration of both keratinocytes and fibroblasts to these scaffolds. Further, the collagen-modified scaffolds (both porous and smooth) produced confluent and uniform epidermal sheets of keratinocytes on one plane with healthy fibroblasts populated within the scaffolds. Thus, presenting a vast potential to serve as a self-organized skin substitute this may be a promising biomaterial for development as a dressing for patients suffering from wounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055397 | PMC |
http://dx.doi.org/10.1039/d0ra04648e | DOI Listing |
ACS Nano
January 2025
Consiglio Nazionale delle Ricerche (CNR) - Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129 Bologna, Italy.
This study reveals the capability of nanostructured organic materials to undergo pseudomorphic transformations, a ubiquitous phenomenon occurring in the mineral kingdom that involves the replacement of a mineral phase with a new one while retaining the original shape and volume. Specifically, it is demonstrated that the postoxidation process induced by HOF·CHCN on preformed thiophene-based 1D nanostructures preserves their macro/microscopic morphology while remarkably altering their electro-optical properties by forming a new oxygenated phase. Experimental evidence proves that this transformation proceeds via an interface-coupled dissolution-precipitation mechanism, leading to the growth of a porous oxidized shell that varies in thickness with exposure time, enveloping the pristine smooth core.
View Article and Find Full Text PDFSci Rep
January 2025
Industrial Engineering Department, School of Applied Technical Sciences, German Jordanian University, Amman, 11180, Jordan.
In this investigation, the influence of a combination of poly(ethylene-oxide) (PEO) and salt (NaCl) as water-soluble porogens on the synthesis of sustainable porous poly(ε-caprolactone) (PCL) membranes is explored. Nine mixture compositions are examined. PCL sheets are fabricated through the cryomilling, hot pressing, and porogen leaching approach.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
Cephalopods produce dynamic colors and skin patterns for communication and camouflage via stratified networks of neuronally actuated yellow, red, and brown chromatophore organs, each filled with thousands of pigment granules. While compositional analysis of chromatophore granules in Doryteuthis pealeii reveals the pigments as ommochromes, the ultrastructural features of the granules and their effects on bulk coloration have not been explored. To investigate this, we isolated granules from specific colored chromatophores and imaged them using multiple modalities.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India.
In the current study, extraction of humic acid (HAs) from lignite fines of kutch basin of Gujarat (western India) were reported. The extraction was done by International Humic Substances Society (IHSS) method. Several analytical and spectroscopic techniques were used to characterize of extracted HAs.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
Carbon-supported single-atom catalysts exhibit exceptional properties in acidic CO reduction. However, traditional carbon supports fall short in building high-site-utilization and CO-rich interfacial environments, and the structural evolution of single-atom metals and catalytic mechanisms under realistic conditions remain ambiguous. Herein, an interconnected mesoporous carbon nanofiber and carbon nanosheet network (IPCF@CS) is reported, derived from microphase-separated block copolymer, to improve catalytic efficiency of isolated Ni.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!