The surface of a medical implant is required to interact favourably with ions, biomolecules and cells , commonly resulting in the formation of the extracellular matrix. Medical grade Ti6Al4V alloy is widely used in orthopaedic and dental applications for bone replacement due to its advantageous mechanical properties and biocompatibility, which enhances the adhesion between native tissue and the implanted material. In this study, chemical and thermal modification of a medical-grade Ti6Al4V alloy were performed to enhance electrostatic interactions at the alloy surface with a synthetic peptide, suitable for conferring drug release capabilities and antimicrobial properties. The modified surfaces exhibited a range of topographies and chemical compositions depending primarily on the treatment temperature. The surface wetting behaviour was found to be pH-dependent, as were the adhesive properties, evidenced by chemical force titration atomic force microscopy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053614 | PMC |
http://dx.doi.org/10.1039/c9ra11000c | DOI Listing |
Materials (Basel)
January 2025
Department of Industrial Engineering, University of Trento, 38123 Trento, Italy.
The metastable β-Ti21S alloy exhibits a lower elastic modulus than Ti-6Al-4V ELI while maintaining high mechanical strength and ductility. To address stress shielding, this study explores the integration of lattice structures within prosthetics, which is made possible through additive manufacturing. Continuous adhesion between the implant and bone is essential; therefore, auxetic bow-tie structures with a negative Poisson's ratio are proposed for regions under tensile stress, while Triply Periodic Minimal Surface (TPMS) structures with a positive Poisson's ratio are recommended for areas under compressive stress.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Mechanical Technology, Poznan University of Technology, 3 Piotrowo Street, 60-965 Poznan, Poland.
Titanium alloys, particularly Ti-6Al-4V, are widely used in many industries due to their high strength, low density, and corrosion resistance. However, machining these materials is challenging due to high strength at elevated temperatures, low thermal conductivity, and high chemical reactivity. This study investigates Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) to analyze tool wear during the finish turning of Ti-6Al-4V.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Energy Engineering, Dhaka University of Engineering & Technology, Gazipur, Bangladesh.
This study investigates the optimization of cutting conditions for machining titanium alloy (Ti-6Al-4V) using Response Surface Methodology (RSM), with the goal of minimizing tool-chip interface temperature and surface roughness. The research focuses on key cutting parameters to investigate the most effective combinations for enhancing surface finish and reducing thermal impact during machining. The present study deals with the dry turning of Ti-6Al-4V alloy with carbide alloy inserts in a way to utilize the Analysis of Variance (ANOVA) to develop predictive models for minimum surface roughness and optimum temperature.
View Article and Find Full Text PDFInt J Implant Dent
January 2025
School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
Purpose: SLM 3D printing technology is one of the most widely used implant-making technologies. However, the surfaces of the implants are relatively rough, and bacteria can easily adhere to them; increasing the risk of postoperative infection. Therefore, we prepared a near-infrared photoresponsive nano-TiO coating on the surface of an SLM 3D-printed titanium alloy sheet (Ti6Al4V) via a hydrothermal method to evaluate its antibacterial properties and biocompatibility.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Key Laboratory of Rapid Development & Manufacturing Technology for Aircraft, Shenyang Aerospace University, Ministry of Education, Shenyang 110136, China.
In Ti-6Al-4V titanium alloy micro-machining, since the uncut chip thickness (UCT) is comparable to the radius of the tool cutting edge, there exists a minimum uncut chip thickness (MUCT), and when the UCT is smaller than the MUCT, the plowing effect dominates the cutting process, which seriously affects the machined surface quality and tool life. Therefore, the reliable prediction of the MUCT is of great significance. This paper used Deform to establish an orthogonal cutting simulation model, studied the effect of the dead metal zone (DMZ) on the micro-cutting material flow, determined the DMZ range, and proposed a new method for determining the MUCT based on the DMZ.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!