To develop high-performance electromagnetic interference (EMI) shielding materials is crucial to solving the growing problem of electromagnetic pollution. Herein, we report a facile way to fabricate reduced graphene oxide/FeO (rGO/FeO) hybrid-modified carbon foams for EMI shielding applications. The rGO/FeO was firstly synthesized a co-precipitation method, and it was then mixed with phenol to prepare rGO/FeO hybrid-modified phenolic foam. The phenolic foam was further used as the precursor to fabricate rGO/FeO hybrid-modified carbon foam by carbonization. The fabricated rGO/FeO hybrid-modified carbon foam showed outstanding EMI shielding performance. The 1.5 wt% rGO/FeO-modified carbon foam with a thickness of 3 mm exhibited an EMI shielding effectiveness (SE) of up to 63.5 dB at the X-band frequency range. In terms of specific EMI SE, these phenolic-based carbon foams with the rGO/FeO hybrid exhibited rather superior performance compared to the regular EMI shielding materials such as metals and conductive polymer composites (CPC). Furthermore, the rGO/FeO hybrid-modified carbon foam showed improved compressive mechanical properties compared with the virgin or rGO-modified carbon foam. Thus, the phenolic-based carbon foam modified with the rGO/FeO hybrid showed a promising future in many advanced applications where both EMI shielding and light weight are required.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065748PMC
http://dx.doi.org/10.1039/c9ra04244jDOI Listing

Publication Analysis

Top Keywords

emi shielding
28
carbon foam
28
rgo/feo hybrid-modified
20
hybrid-modified carbon
16
rgo/feo hybrid
12
phenolic-based carbon
12
rgo/feo
9
carbon
9
foam
9
emi
8

Similar Publications

Waste polyethylene (WPE) and virgin polyethylene (VPE) (50:50) thermoplastic have been melt-mixed with biochar (BC) made from orange peels at ratios of 5, 10, and 15(Phr) to evaluate how the filler content affected the mechanical, thermal, optical, electrical conductivity, and electromagnetic interference (EMI). γ-rays was applied to the prepared specimens to assess how radiation affected the created biocomposites. From the obtained results, the combination of BC with γ-rays, at doses of up to 100 kGy, with thermoplastic resulted in an enhanced mechanical property, particularly for composites containing 15 Phr of BC added because of its unique structure and excellent dispersion.

View Article and Find Full Text PDF

Designing Carbon-Foam Composites via Molten-State Reduction for Multifunctional Electromagnetic Interference Shielding.

ACS Nano

January 2025

NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, Florida 32826, United States.

Advanced electromagnetic interference (EMI) shielding materials are in great demand because of the severe electromagnetic population problem caused by the explosive growth of advanced electronics. Besides superior EMI shielding properties, the mechanical strength of the shielding materials is also critical for some specific application scenarios (e.g.

View Article and Find Full Text PDF

Microgel-Guided MXene Assembly for High-Performance, Low-Solid Content Conductive Inks.

ACS Appl Mater Interfaces

January 2025

Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States.

Rapid evolution of smart devices necessitates high-performance, lightweight materials for effective electromagnetic interference (EMI) shielding. TiCT MXene nanosheets are promising for such applications, yet the high solid content typically required for 3D-printable MXene inks limits their scalability and cost efficiency. In this study, we present an MXene-based ink with an ultralow solid content (0.

View Article and Find Full Text PDF

Eco-friendly cellulose paper composites: A sustainable solution for EMI shielding and green engineering applications.

Int J Biol Macromol

December 2024

International and Inter-University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala 686 560, India; School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O.Box 17011, Doornfontein, 2028 Johannesburg, South Africa; Trivandrum Engineering, Science and Technology (TrEST) Research Park, Trivandrum 695016, India; School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala India 686560. Electronic address:

Cellulose paper-based composites represent a promising and sustainable alternative for electromagnetic interference (EMI) shielding applications. Derived from renewable and biodegradable cellulose fibers, these composites are enhanced with conductive fillers namely carbon nanotubes, graphene, or metallic nanoparticles, achieving efficient EMI shielding while maintaining environmental friendliness. Their lightweight, flexible nature, and mechanical robustness make them ideal for diverse applications, including wearable electronics, flexible circuits, and green electronics.

View Article and Find Full Text PDF

Hierarchically Porous Polypyrrole Foams Contained Ordered Polypyrrole Nanowire Arrays for Multifunctional Electromagnetic Interference Shielding and Dynamic Infrared Stealth.

Nanomicro Lett

December 2024

School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.

As modern communication and detection technologies advance at a swift pace, multifunctional electromagnetic interference (EMI) shielding materials with active/positive infrared stealth, hydrophobicity, and electric-thermal conversion ability have received extensive attention. Meeting the aforesaid requirements simultaneously remains a huge challenge. In this research, the melamine foam (MF)/polypyrrole (PPy) nanowire arrays (MF@PPy) were fabricated via one-step electrochemical polymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!