Graphitic carbon nitride (g-CN) was prepared by a simple thermal polymerization method in this work. The effects of precursor type, thermal polymerization temperature, constant temperature time and atmosphere on the crystal structure, morphology, elemental composition, valence distribution, light absorption properties and photocatalytic activity of the prepared photocatalytic materials were investigated. Taking rhodamine B (RhB) as the target degradant, the blue light catalytic activity of the photocatalytic material was studied in detail. The experimental results showed that the final pyrolysis temperature and constant temperature time are positively related to the adsorption characteristics and photocatalytic ability of the prepared materials. In addition, the adsorption capacity and photocatalytic activity of the products obtained in Ar and H atmospheres are better than those produced in CO and CH, which can be attributed to the combined effect of large specific surface area and structural defects of the materials. The sample's large specific surface area, wide band gap, and excellent photogenerated carrier separation and transfer capabilities make the adsorption performance and photocatalytic performance of the products obtained with ammonium thiocyanate and thiourea as precursors better than those prepared from melamine and dicyandiamide. g-CN prepared by using ammonium thiocyanate as precursor at 550 °C for 5 h under a hydrogen atmosphere showed the best catalytic activity for the degradation of RhB under blue light. It was demonstrated that g-CN prepared exhibited good stability and reusability after four repeat experiments. The active components that play major roles in the degradation of RhB described herein were holes and superoxide radicals, which was inferred by free radical trapping experiments. This work provides a theoretical basis for the idea of converting the mixed salts of desulfurization waste liquid containing ammonium thiocyanate into an excellent photocatalyst g-CN with visible light response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054138 | PMC |
http://dx.doi.org/10.1039/d0ra02454f | DOI Listing |
ACS Omega
December 2024
Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
This study investigates whether 17β-estradiol (E2), a natural estrogen and one of the endocrine-disrupting chemicals responsible for water pollution, can be oxidatively decomposed under simulated solar light using a composite of tin oxide nanoparticles and graphene-like carbon nitride (g-CN) as a photocatalyst. The composite photocatalyst was prepared by heating a mixture of urea and tin acetate. FT-IR measurements revealed that g-CN possesses structural units similar to g-CN, a well-studied graphite-like carbon nitride.
View Article and Find Full Text PDFAnal Methods
August 2024
Chemistry Department, Faculty of Science, Mansoura University, 23768, Mansoura, Egypt.
The selective and sensitive detection of Al(III) is critically important for human health since the level of Al(III) is an indicator of many diseases in humans. Herein, we developed a simple and sensitive fluorescent sensor for the detection of Al(III) in an aqueous solution based on the fluorescence of hydroxyl-functionalized graphitic carbon nitride nanosheets (HO/g-CN). OH/g-CN nanosheets were synthesized the thermal pyrolysis of 1,3,5-triazine-2,4,6-triamine (as raw material) at 550 °C for 2 hours, followed by thermal alkali treatment at 730 °C for 2 min.
View Article and Find Full Text PDFChemSusChem
October 2024
Department of Chemical Sciences, Padova University and INSTM, Via Marzolo 1, 35131, Padova, Italy.
In the present work, exfoliated graphitic carbon nitride (g-CN) is immobilized on carbon paper substrates by a simple electrophoretic route, and subsequently decorated with ultra-low amounts (≈μg/cm) of Pt nanoparticles (NPs) by cold plasma sputtering. Optimization of preparative conditions allowed a fine tuning of Pt NPs size, loading and distribution and thus a controlled tailoring of g-CN/Pt interfacial interactions. Modulation of such features yielded g-CN-Pt-based anode materials with appealing activity and stability towards the ethanol oxidation reaction (EOR) in alkaline aqueous solutions, as revealed by electrochemical tests both in the dark and under irradiation.
View Article and Find Full Text PDFAnal Chem
June 2024
Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China.
Due to the commonly low content of biomarkers in diseases, increasing the sensitivity of electrochemiluminescence (ECL) systems is of great significance for in vitro ECL diagnosis and biodetection. Although dissolved O (DO) has recently been considered superior to HO as a coreactant in the most widely used luminol ECL systems owing to its improved stability and less biotoxicity, it still has unsatisfactory ECL performance because of its ultralow reactivity. In this study, an effective plasmonic luminol-DO ECL system has been developed by complexing luminol-capped Ag nanoparticles (AgNPs) with plasma-treated Fe single-atom catalysts (Fe-SACs) embedded in graphitic carbon nitride (g-CN) (pFe-g-CN).
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2024
Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China.
Electrochemiluminescence (ECL) luminophores with wavelength-tunable multicolor emissions are essential for multicolor ECL imaging detection and multiplexed analysis. In this work, silver nanoparticle (Ag NP)-decorated graphitic carbon nitride (g-CN@Ag) nanocomposites were synthesized. The morphology, chemical composition, structure, and ECL property of g-CN@Ag were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!