The chemical modification of graphdiyne (GDY) using light elements is a possible route to regulate its unique structure and optoelectronic properties. In this paper it is shown that directly heating a mixture of xenon difluoride and GDY produces partially fluorinated GDY with covalent C-F bonding and localized sp-carbon hybridization because of the breaking of the acetylenic bond. It is seen that the fluorescence of GDY is significantly enhanced because of the fluorine doping. All the fluorinated GDYs with different doping ratios of fluorine exhibit photoluminescence from bright blue to green when the excitation wavelength varies from 260 nm to 480 nm. In addition, the doped GDY with 15.2% fluorine doping shows a strong photoluminescence and the quantum efficiency is 3.7%. The enhanced fluorescence is considered to be induced by defect states because of the doping of fluorine, suggesting its potential applications in luminescence devices, such as biological sensing and flexible light-emitting diodes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064808 | PMC |
http://dx.doi.org/10.1039/c9ra02272d | DOI Listing |
Light Sci Appl
January 2025
School of Physics, Beihang University, 100191, Beijing, China.
A fidelity-ensured multi-resolution analysis deconvolution algorithm significantly enhances fluorescence microscopy's resolution and noise control, enabling more accurate and detailed imaging for advanced biological research applications.
View Article and Find Full Text PDFAnticancer Res
December 2024
Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, P.R. China;
Background/aim: Chemotherapy based on 5-fluorouracil (5-Fu) is the first-line treatment for advanced gastric cancer (GC) patients. Importantly, 5-Fu resistance is recognized as a major obstacle for the successful treatment of GC. Circular RNAs (circRNAs) are non-coding RNAs involved in the pathogenesis of GC.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, People's Republic of China. Electronic address:
Heteroatom doping is a promising strategy for optimizing the photocatalytic activity of semiconductors. However, relying solely on single-element doping often poses challenges in modulating the capabilities of semiconductors. Herein, we adopt a strategy of simultaneously modifying ZnInS with the double non-metallic elements nitrogen (N) and oxygen (O) to form (N, O)-ZnInS.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China.
CRISPR-Cas-based technology, emerging as a leading platform for molecular assays, has been extensively researched and applied in bioanalysis. However, achieving simultaneous and highly sensitive detection of multiple nucleic acid targets remains a significant challenge for most current CRISPR-Cas systems. Herein, a CRISPR Cas12a based calibratable single particle counting-mediated biosensor was constructed for dual RNAs logic and ultra-sensitive detection in one tube based on DNA Tetrahedron (DTN)-interface supported fluorescent particle probes coupled with a novel synergistic cascaded strategy between CRISPR Cas13a system and strand displacement amplification (SDA).
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China. Electronic address:
With the unique photo-physical properties and strong bio-compatibility. Quantum dots (QDs) have sparked interest in biomedical fields such as imaging, biosensing and therapeutics. However, the low stability and insufficient tumor specificity have largely constrained their potential biomedical applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!