Heavy metal ions are highly toxic and widely spread as environmental pollutants. This work reports the development of two novel chelating adsorbents, based on the chemical modifications of graphene oxide and zirconium phosphate by functionalization with melamine-based chelating ligands for the effective and selective extraction of Hg(ii) and Pb(ii) from contaminated water sources. The first adsorbent melamine, thiourea-partially reduced graphene oxide (MT-PRGO) combines the heavier donor atom sulfur with the amine and triazine nitrogen's functional groups attached to the partially reduced GO nanosheets to effectively capture Hg(ii) ions from water. The MT-PRGO adsorbent shows high efficiency for the extraction of Hg(ii) with a capacity of 651 mg g and very fast kinetics resulting in a 100% removal of Hg(ii) from 500 ppb and 50 ppm concentrations in 15 second and 30 min, respectively. The second adsorbent, melamine zirconium phosphate (M-ZrP), is designed to combine the amine and triazine nitrogen's functional groups of melamine with the hydroxyl active sites of zirconium phosphate to effectively capture Pb(ii) ions from water. The M-ZrP adsorbent shows exceptionally high adsorption affinity for Pb(ii) with a capacity of 681 mg g and 1000 mg g using an adsorbent dose of 1 g L and 2 g L, respectively. The high adsorption capacity is also coupled with fast kinetics where the equilibrium time required for the 100% removal of Pb(ii) from 1 ppm, 100 ppm and 1000 ppm concentrations is 40 seconds, 5 min and 30 min, respectively using an adsorbent dose of 1 g L. In a mixture of six heavy metal ions at a concentration of 10 ppm, the removal efficiency is 100% for Pb(ii), 99% for Hg(ii), Cd(ii) and Zn(ii), 94% for Cu(ii), and 90% for Ni(ii) while at a higher concentration of 250 ppm the removal efficiency for Pb(ii) is 95% compared to 23% for Hg(ii) and less than 10% for the other ions. Because of the fast adsorption kinetics, high removal capacity, excellent regeneration, stability and reusability, the MT-PRGO and M-ZrP are proposed as top performing remediation adsorbents for the solid phase extraction of Hg(ii) and Pb(ii), respectively from contaminated water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057240PMC
http://dx.doi.org/10.1039/d0ra07546aDOI Listing

Publication Analysis

Top Keywords

zirconium phosphate
16
graphene oxide
12
ions water
12
extraction hgii
12
oxide zirconium
8
heavy metal
8
metal ions
8
hgii pbii
8
pbii contaminated
8
contaminated water
8

Similar Publications

In this study, the zirconium-based metal organic framework (Zr-MOF) was applied as the adsorbent for phosphorus (P) pollution in water. Then the phosphate-adsorbed metal organic frameworks (MOFs) were used as a recycled raw material and calcined to obtain P-doped MOFs-derived carbon material (ZrP@Zr-BTC). Next, the ZrP@Zr-BTC was used for peroxymonosulfate (PMS) activation for the ceftriaxone sodium degradation.

View Article and Find Full Text PDF

The removal of copper from wastewater of mine origin requires the use of an appropriate method. Sorption methods are considered to be one of the best solutions for removing copper from industrial wastewater at low levels. Metal(IV) phosphates have been reported as excellent sorption materials that can be highly selective for copper.

View Article and Find Full Text PDF

The mixture of hexamethylene diisocyanate (HDI) and butanol (BuOH) with the intercalation compound of 1,4-diazabicyclo[2.2.2]octane (DABCO) with α-zirconium phosphate (α-ZrP) has been evaluated as a latent thermal catalyst at varying temperatures.

View Article and Find Full Text PDF

Effect of Acidulated Phosphate Fluoride Gel on Zirconia Intaglio Surface: An Study.

J Int Soc Prev Community Dent

October 2024

Department of Basic Dental Science, College of Dentistry, University of Mosul, Mosul, Iraq.

Aim: To evaluate the micro-shear bond strength (µ-SBS) of resin-modified glass ionomer cement and to assess the chemical and topographical changes in the zirconia fitting surface induced by acidulated phosphate fluoride (APF) gel using scanning electron microscope (SEM) analysis and Fourier transform infrared (FTIR) spectroscopy.

Materials And Methods: Thirty-two samples were prepared from two zirconia materials, UPCERA HT White and BruxZir Solid Zirconia, milled by a computer-aided design/computer-aided manufacturing system. From each zirconia sample, six plates were prepared for FTIR and SEM testing.

View Article and Find Full Text PDF

We fabricated composite membranes containing inorganic nanosheets (NSs) and polymers and demonstrated their outstanding antibacterial performance against several opportunistic pathogens. Layered α-zirconium phosphate [Zr(HPO), α-ZrP] as a pristine compound of NS was exfoliated by ion-exchanging protons in the interlayer space of α-ZrP with bulky tetraalkylammonium ions (TRA: R = butyl, hexyl, and octyl). During the exfoliation process, TRA was electrostatically adsorbed onto α-ZrP NS with a negative surface charge (ZrP-TRA-NS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!