Plasmonic dye-sensitized solar cells containing metal nanoparticles suffer from stability issues due to their miscibility with liquid iodine-based electrolytes. To resolve the stability issue, herein, an ion implantation technique was explored to implant metal nanoparticles inside TiO, which protected these nanoparticles with a thin coverage of TiO melt and maintained the localized surface plasmon resonance oscillations of the metal nanoparticles to efficiently enhance their light absorption and make them corrosion resistant. Herein, Au nanoparticles were implanted into the TiO matrix up to the penetration depth of 22 nm, and their influence on the structural and optical properties of TiO was studied. Moreover, plasmonic dye-sensitized solar cells were fabricated using N719 dye-loaded Au-implanted TiO photoanodes, and their power conversion efficiency was found to be 44.7% higher than that of the unimplanted TiO-based dye-sensitized solar cells due to the enhanced light absorption of the dye molecules in the vicinity of the localized surface plasmon resonance of Au as well as the efficient electron charge transport at the TiO@Au@N719/electrolyte interface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065801PMC
http://dx.doi.org/10.1039/c9ra02657fDOI Listing

Publication Analysis

Top Keywords

dye-sensitized solar
16
solar cells
16
plasmonic dye-sensitized
12
metal nanoparticles
12
localized surface
8
surface plasmon
8
plasmon resonance
8
light absorption
8
nanoparticles
5
tio
5

Similar Publications

Dye sensitized solar cells: Meta-analysis of effect sensitizer-type on photovoltaic efficiency.

Heliyon

January 2025

Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, Puerto Colombia, 81007, Colombia.

Since Dye-Sensitized Solar Cells (DSSCs) was created, a versatile and cost-effective alternative among photovoltaic technology options for power generation and energy transition to combat climate change have emerged. The theoretical and experimental knowledge of DSSCs have increased in regard to their operation in the last three decades of development; it includes the device's components, as well as the most recent innovations in their application and forms of activation. In this work paper, we presented a meta-study of photovoltaic characterization parameters, 329 scientific reports of DSSCs were considered to compare three types of sensitizers (Organometallics, non-metal organic dyes and, natural dyes).

View Article and Find Full Text PDF

This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.

View Article and Find Full Text PDF

Efficient CO Electrocarboxylation Using Dye-Sensitized Photovoltaics.

Molecules

December 2024

School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.

This paper presents the solar-driven electrocarboxylation of 2-bromopyridine (2-BP) with CO into high-value-added chemicals 2-picolinic acid (2-PA) using dye-sensitized photovoltaics under simulated sunlight. Using three series-connected photovoltaic modules and an Ag electrode with excellent catalytic performance, a Faraday efficiency () of 33.3% is obtained for 2-PA under mild conditions.

View Article and Find Full Text PDF

Phenothiazine-based photosensitizers bear the intrinsic potential to substitute various expensive organometallic dyes owing to the strong electron-donating nature of the former. If coupled with a strong acceptor unit and the length of N-alkyl chain is appropriately chosen, they can easily produce high efficiency levels in dye-sensitized solar cells. Here, three novel D-A dyes containing 1H-tetrazole-5-acrylic acid as an acceptor were synthesized by varying the N-alkyl chain length at its phenothiazine core and were exploited in dye-sensitized solar cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!