VUV photons from a synchrotron source were used to record the gas-phase absorption spectrum of isoquinoline over the range 3.5 to 10.7 eV. The rich spectrum exhibits both broad and sharp features, of varying intensities, that are analyzed into eight valence and eight Rydberg transitions. Previous data on the valence transitions of isoquinoline were essentially limited to solution spectra up to 5.4 eV. Our study increases their number considerably. The features in the 3.96 eV region are discussed in terms of vibronic coupling between the nπ* 1A'' and ππ* 2A' valence electronic states. The intensities of some spectral features are augmented by collective π-electron modes considered to be of plasmon-type. Assignments of the valence transitions were facilitated by our DFT calculations and by earlier Pariser-Parr-Pople MO calculations. The calculation results are compared and their relative value is discussed. The DFT calculations reproduce very well a number of experimentally determined properties of the ground state of isoquinoline, in particular its bond distances and angles, rotational constants, vibrational frequencies and dipole moment. No Rydberg series of isoquinoline have previously been observed. Three of the newly observed Rydberg series converge to the D electronic ground state of the ion, while two converge to the D and three to the D excited electronic states of the cation. Astrophysical applications of the VUV absorption spectrum of isoquinoline, in particular the measured absorption cross-sections, are briefly discussed. A comparison between the absorption spectra of isoquinoline and quinoline highlights their similarities and differences, related to their respective molecular orbitals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060705 | PMC |
http://dx.doi.org/10.1039/c8ra09725a | DOI Listing |
J Mol Model
January 2025
Department of Physics, Faculty of Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran.
RSC Adv
January 2025
Nanoscience Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology New Borg El-Arab City Alexandria Egypt
We report herein a facile synthesis, characterization, and the electron transfer reaction of a novel light-harvesting material composed of laser-induced graphene (LIG) functionalized with the photoactive 5,10,15,20-tetrakis(4-trimethylammoniophenyl)porphyrin tetra(-toluenesulfonate) dye (TTMAPP). LIG was easily fabricated on the surface of a polyimide sheet using VersaLASER 3.6 (VLS 3.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Beihang University, School of Chemistry, chemsitry, No 37 Xueyuan Rd, 100191, Beijing, CHINA.
Achieving multi-spectrum compatible stealth in radar-terahertz-infrared bands with robust performance has great prospects for both military and civilian applications. However, the progress of materials encounters substantial challenges due to the significant variability in frequency coupling properties across different electromagnetic wave bands. Here, this work presents the design of a multi-scale structure and fabricates a lightweight aerogel (silver nanowire@carbon, AgNW@C) consisting of a regular coaxial nano-cable, with silver nanowire as the core and amorphous-graphitized hybrid carbon as the outer-layer.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Analytical and Testing Center, Lingnan Normal University, Cunjin Road 29, Chikan District, Zhanjiang, Guangdong Province 524048, People's Republic of China.
Understanding the interactions between small molecules and calf thymus deoxyribonucleic acid (ctDNA) is critical for certain aspects of drug discovery. In this study, three 11H-indeno[1,2-b]quinoxalin-11-one thiosemicarbazones were synthesized and their interaction with ctDNA was examined through various spectroscopic techniques, including ultraviolet (UV) spectroscopy, fluorescence spectroscopy, and circular dichroism (CD) spectrum, and through physicochemical methods, including viscosity measurements. In addition, the effects of these thiosemicarbazone compounds 4a, 4b and 4c on several cancer cell lines were explored.
View Article and Find Full Text PDFHeliyon
November 2024
Faculty of Physics, Shahrood University of Technology, 3619995161, Shahrood, Iran.
This study evaluates the deposition of diamond-like carbon (DLC) films with copper impurities on a glass substrate using simultaneous direct current (DC) and radio frequency (RF) magnetron sputtering. The structural, optical, electrical, and mechanical properties, as well as the surface topography of the films, were investigated under various DC power levels using Raman spectroscopy, ellipsometry, UV-VIS, I-V measurements, nanoindentation, AFM, and FESEM. Results indicate that increasing the DC power to the graphite target from 60 to 120 , while maintaining a constant 10 of RF power to the copper target, enhances the optical absorption coefficient of the films and increases the optical bandgap from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!