The water crisis is a big social problem and one of the solutions are the Fog Water Collectors (FWCs) that are placed in areas, where the use of conventional methods to collect water is impossible or inadequate. The most common fog collecting medium in FWC is Raschel mesh, which in our study is modified with electrospun polyamide 6 (PA6) nanofibers. The hydrophilic PA6 nanofibers were directly deposited on Raschel meshes to create the hierarchical structure that increases the effective surface area which enhances the ability to catch water droplets from fog. The meshes and the wetting behavior were investigated using a scanning electron microscope (SEM) and environmental SEM (ESEM). We performed the fog water collection experiments on various configurations of Raschel meshes with hydrophilic PA6 nanofibers. The addition of hydrophilic nanofibers allowed us to obtain 3 times higher water collection rate of collecting water from fog. Within this study, we show the innovative and straightforward way to modify the existing technology that improves water collection by changing the mechanisms of droplet formation on the mesh.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054577 | PMC |
http://dx.doi.org/10.1039/d0ra03939j | DOI Listing |
Chem Pharm Bull (Tokyo)
January 2025
Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University.
This study investigates the influence of needleless versus needle-based electrospinning methods on the fiber diameter of polyamide 6 (PA6) nanofibers under comparable conditions, with an emphasis on potential pharmaceutical applications. Additionally, it examines how varying solvent systems impact fiber diameter specifically in needleless electrospinning. In this study, it was found that fibers produced by the needleless method were thicker compared to those produced by the needle-based method, a trend attributable to the specific solution characteristics and parameter settings unique to this study.
View Article and Find Full Text PDFLangmuir
December 2024
Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
Metal-containing dyes in the textile industry release heavy metal ions into wastewater, posing significant environmental risks and complicating treatment processes. Among various removal methods, chemical adsorption through functional groups that form stable complexes is one of the most effective. Tannic acid (TA), renowned for its strong chelation of metal ions via phenolic hydroxyl groups, faces challenges in operation and recycling in its powdered form.
View Article and Find Full Text PDFOpen Res Eur
October 2024
Institute of Biomedical Mechatronics, Johannes Kepler University Linz, Linz, Upper Austria, 4040, Austria.
People with injuries to the peripheral nervous system suffer from paralysis of the facial muscles, fingers and hands or toes and feet, often for the rest of their lives, due to its poor functional regeneration. Therefore, to improve patients' quality of life, there is an urgent need for conduits that effectively support the healing of large defects in nerve pathways through specific guidance of nerve cells. This paper describes two specific methods for achieving directed growth of Schwann cells, a type of glial cells that can support the regeneration of the nerve pathway by guiding the neuronal axons in the direction of their alignment.
View Article and Find Full Text PDFFront Chem
September 2024
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States.
Essential properties for a Point of Use (POU) water filter include maintaining high removal capacity and rate, with excellent mechanical properties to withstand pressure drop. Herein, mechanically robust tri-composite polyamide 6/iron oxide nanoparticles/tetra-n-butylammonium bromide (PA6/α-FeO/TBAB) nanofiber composite membranes were electrospun for phosphate (P) remediation, where the diameter and composition were tuned by controlling solution compositions and electrospinning conditions. Tri-composite composition and morphology affect phosphate uptake where the adsorption capacity followed Langmuir isotherm whereas the adsorption kinetics followed pseudo second order behavior.
View Article and Find Full Text PDFArch Pharm (Weinheim)
August 2024
Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
Various wound dressings have been developed so far for wound healing, but most of them are ineffective in properly reestablishing the skin's structure, which increases infection risks and dehydration. Electrospun membranes are particularly interesting for wound dressing applications because they mimic the extracellular matrix of healthy skin. In this study, a potential wound healing platform capable of inducing synergistic antibacterial and antioxidation activities was developed by incorporating bio-active rosmarinic acid-hydroxyapatite hybrid (HAP-RA) with different contents (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!