Green nanotechnology is gaining widespread interest owing to the elimination of harmful reagents and offers a cost-effective synthesis of expected products. In the present study, silver nanoparticles (AgNPs) were synthesized from leaf extract (ACLE). UV-visible spectrophotometry showing a characteristic SPR peak at 443 nm verified the phytosynthesis of AC-AgNPs. The FTIR spectrum was examined to identify the efficient functional molecules responsible for the reduction of Ag to metallic silver (Ag). SEM, TEM and XRD illustrated the formation of crystalline and spherical NPs with a size range of 14-48 nm. EDX data showed the presence of elemental silver with an energy peak at 3 eV. CT-DNA interaction with AC-AgNPs was investigated and the UV absorption spectra revealed a bathochromic effect indicating groove binding. AC-AgNPs showed a strong antioxidant property in a concentration-dependent manner when analyzed by DPPH and ABTS radical scavenging assay. AC-AgNPs were investigated as a SPR-based HO sensor, which can provide promising opportunities in medical and environmental fields to detect reactive oxygen species such as HO. The catalytic effectiveness of phytosynthesized NPs was also examined within 2 h of exposure for methylene blue degradation under sunlight. There is thus a reasonable potential application of green synthesized AC-AgNPs for the degradation of hazardous synthetic dyes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067290 | PMC |
http://dx.doi.org/10.1039/c9ra03590g | DOI Listing |
BMC Microbiol
January 2025
Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, Egypt.
Background: Novel platforms using nanotechnology-based medicines have exponentially increased in our daily lives. The unique characteristics of metal oxide and noble metals nanoparticles make them suitable for different fields including antimicrobial agents, cosmetics, textiles, wound dressings, and anticancer drug carriers.
Methods: This study focuses on the biosynthesis of small-sized SNPs using exo-metabolites of Fusarium oxysporum via bioprocess optimization using Plackett-Burman (PBD) and central composite designs (CCD) while evaluating their multifaceted bioactivities.
Environ Sci Pollut Res Int
January 2025
Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
A sustainable biosorbent, silver nanoparticles-decorated coffee-ground waste (CWAg), was synthesized through a simple in-situ reduction method. CWAg is extensively characterized via SEM-EDX, PZC, FTIR, XRD, HR-TEM, and XPS analyses. The biosorbent was tested to remove chromium (Cr(VI)) and methylene blue (MB) from wastewater, and its antibacterial properties was evaluated.
View Article and Find Full Text PDFSci Rep
January 2025
College of Resource and Civil Engineering, Northeast University, Shenyang, China.
This study presents the fabrication and characterization of mixed matrix membranes (MMMs) incorporating green-synthesized silver nanoparticles (AgNPs) using Hibiscus Rosa sinensis extract within a polyethersulfone (PES) matrix for nanofiltration (NF) application. The membranes were evaluated for their pure water permeability, salt rejection, dye removal, and antifouling performance. Results showed that the membrane with 0.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department F.-A. Forel for Environmental and Aquatic Sciences, Section Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland. Electronic address:
Silver nanoparticles (AgNPs) are increasingly used in various consumer products and industrial applications, raising concerns about their environmental impact on aquatic ecosystems. This study investigated the physicochemical stability, trophic transfer, and toxic effects of citrate-coated AgNPs in a freshwater food chain including the diatom Cyclotella meneghiniana and the gastropod Lymnaea stagnalis. AgNPs remained stable in the exposure medium, with a minimal dissolution (<0.
View Article and Find Full Text PDFMed Oncol
January 2025
Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
Reactive oxygen species (ROS) generated by oxidative stress have emerged as critical factors in the pathophysiology of malignancies. This study investigated the antioxidant and anticancer properties of zinc (Zn), selenium (Se), and silver (Ag) nanoparticles (NPs) against the A2780 human ovarian cancer cell line. Here, the bioinformatics approach was used to determine the top differentially expressed genes associated with oxidative stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!