In this work, nitrogen and phosphorus co-doped magnetic carbon spheres encapsulating well-dispersed active Fe nanocrystals (Fe/P-CN) were fabricated a simple copolymer pyrolysis strategy. Benefiting from heteroatoms doping, Fe/P-CN could primarily adsorb soluble U(vi) ions through abundant functional groups, and subsequently, the adsorbed U(vi) could be reduced to insoluble U(iv) by Fe nanocrystals. Fe/P-CN pyrolyzed at 800 °C (Fe/P-CN-800) exhibited excellent U(vi) removal capacity of 306.76 mg g, surpassing nitrogen and phosphorus co-doped carbon spheres and nano zero-valent iron. In addition, the magnetic separation and thermal reactivation properties endow Fe/P-CN-800 with excellent reusability. This research, especially, provides a promising synergistic adsorption and reduction strategy to effectively remove U(vi) using heteroatom-doped composites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056867 | PMC |
http://dx.doi.org/10.1039/d0ra06252a | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States.
Porous liquids have traditionally been designed with sterically hindered solvents. Alternatively, recent efforts rely on dispersing microporous frameworks in simpler solvents like water. Here we report a unique strategy to construct macroporous water by selectively incorporating hydrophilicity on the surfaces of hydrophobic hollow carbon spheres (HCS).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Western University, Chemistry, 1151 Richmond Street, N6A3K7, London, CANADA.
This work addresses fundamental questions that deepen our understanding of secondary coordination sphere effects on carbon dioxide (CO2) reduction using derivatized hydride analogues of the type, [Cp*Fe(diphosphine)H] (Cp* = C5Me5-) - a well-studied family of organometallic complex - as models. More precisely, we describe the general reactivity of [(Cp*-BR2)Fe(diphosphine)H], which contains an intramolecularly positioned Lewis acid, and its cooperative reactivity with CO2. Control experiments underscore the critical nature of borane incorporation for CO2 to reduced products, a reaction that does not occur for unfunctionalized [Cp*Fe(diphosphine)H]).
View Article and Find Full Text PDFFEMS Microbiol Ecol
January 2025
Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China.
In polar and alpine regions, global warming and landform changes are draining lakes, transforming them into permafrost with altered microbial communities and element cycling. In this study, we investigated bacterial and archaeal (prokaryotic) community changes in the newly exposed sediment of Zonag Lake (Tibetan Plateau), focusing on prokaryotic diversity, community structure, and genes involved in carbon fixation and nitrogen cycling across lateral (up to 800 m) and vertical (up to 80 cm) horizons. The results showed that prokaryotic richness decreased across the lateral horizons, coinciding with reductions in carbon concentrations.
View Article and Find Full Text PDFLangmuir
January 2025
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
Small Methods
January 2025
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
Anode-less sodium metal batteries (SMBs) suffer from the formation of Na dendrites and inactive Na on an anode substrate though showing advantages of high energy densities and low costs. Herein, N,O co-doped carbon spheres (NOCS), which are synthesized via a scalable polymerization and pyrolysis method, are employed as a thin and stable sodiophillic nucleation layer on the Cu foil. Combined with electrochemical measurements, Na deposition morphology observations and density functional theory calculations, it is revealed that the introduced N and O heteroatoms can greatly enhance the adsorption of Na on the carbon substrate and reduce the nucleation overpotential, thus forming sufficient seeding sites and guiding homogeneous Na deposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!