A digital workflow for layering composite resin restorations by using 3-dimensionally printed templates to replicate the contralateral tooth accurately and rapidly.

J Prosthet Dent

Professor, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China. Electronic address:

Published: May 2024

This article described a digital workflow for layering composite resin restorations by using a digital software program and 3-dimensionally printed templates. To mimic the appearance of the natural tooth, the computer-aided design was used to copy the shape of the contralateral tooth. Three-dimensionally printed templates to replicate the contralateral tooth accurately and rapidly can help dentists build different layers of dentin and enamel composite resin, achieving layered esthetic outcomes. This workflow provides an efficient and accurate procedure, reduces chairside time, and simplifies the application of the technically sensitive composite resin layering technique.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prosdent.2022.03.018DOI Listing

Publication Analysis

Top Keywords

composite resin
16
printed templates
12
contralateral tooth
12
digital workflow
8
workflow layering
8
layering composite
8
resin restorations
8
3-dimensionally printed
8
templates replicate
8
replicate contralateral
8

Similar Publications

Research of mesoporous silica loaded lignin to enhance the anti-corrosion and anti-weathering performance of epoxy surface.

Int J Biol Macromol

January 2025

Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China. Electronic address:

A new type of filler was added to epoxy resin to prepare a composite coating with excellent corrosion and weathering resistance. The simple synthesis process and nonpolluting raw materials of this filler contribute to the development of green chemistry. Specifically, lignin was encapsulated in mesoporous silica, the synergistic effect between the two resulted in the formation of lignin/mesoporous silica composite particles (MSN-L) with excellent ultraviolet (UV) resistance.

View Article and Find Full Text PDF

3-Dimensional topographic enamel surface changes after different debonding techniques for aligner attachments: a micro-CT study.

Clin Oral Investig

January 2025

Faculty of Dentistry, Department of Orthodontics , Hacettepe University, Sihhiye, Ankara, 06100, Turkey.

Introduction: To evaluate topographic changes of enamel surface in 3-dimensional after different debonding methods of aligner attachments formed with 2 different composite resins.

Methods: Vertical rectangular attachments were created on 88 premolar teeth and divided into two composite resin groups (Group 1:flowable, Group 2:packable) (N = 44). These were then divided into two subgroups (N = 22) using different debonding methods.

View Article and Find Full Text PDF

Vat photopolymerization (VPP) is an additive manufacturing method that requires the design of photocurable resins to act as feedstock and binder for the printing of parts, both monolithic and composite. The design of a suitable photoresin is costly and time-consuming. The development of one formulation requires the consumption of kilograms of costly materials, weeks of printing and performance testing, as well as the need to have developers with the expertise and knowledge of the materials used, making the development process cost thousands.

View Article and Find Full Text PDF

The objective of the present work was to prepare hybrid epoxy composites with improved mechanical and thermal properties. The simultaneous use of two different modifiers in an epoxy resin was motivated by the expected occurrence of synergistic effects on the performance properties of the matrix. Such a hybrid composite can be used in more severe conditions and/or in broader application areas.

View Article and Find Full Text PDF

In this paper, alumina-modified wood liquefaction (AL-WP) was prepared by blending nano-alumina (AlO) into wood liquefaction phenolic resin (WP) using a co-blending method. Alumina-modified wood liquefaction protofilament fiber (AL-WPF) was obtained by melt-spinning, curing, and thermo-curing processes, which were followed by carbonization to obtain alumina-modified wood liquefaction carbon fiber (AL-WCF). This paper focuses on the enhancement effect of nano-alumina doping on the mechanical properties and heat resistance of wood liquefaction carbon fiber (WCF), explores the evolution of graphite microcrystalline structure during the high-temperature carbonization process, and optimizes the curing conditions of AL-WPF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!