A sensitive biosensor for the detection of miR-141 has been constructed. The DNA-biosensor is prepared by first immobilizing the thiolated methylene blue-labeled hairpin capture probe (MB-HCP) on two-layer nanocomposite film graphene oxide-chitosan@ polyvinylpyrrolidone-gold nanourchin modified glassy carbon electrode. We used the hematoxylin as an electrochemical auxiliary indicator in the second stage to recognize DNA hybridization via the square wave voltammetry (SWV) responses that record the accumulated hematoxylin on electrode surfaces. The morphology and chemical composition of nanocomposite was characterized using TEM, FE-SEM, and FT-IR techniques. The preparation stages of the DNA-biosensor were screened by electrochemical impedance spectroscopy and cyclic voltammetry. The proposed DNA-biosensor can distinguish miR-141 from a non-complementary and mismatch sequence. A detection limit of 0.94 fM and a linear range of 2.0 -5.0 × 10 fM were obtained using SWV for miR-141 detection. The working potential for methylene blue and hematoxylin was -0.28 and + 0.15 V vs. Ag/AgCl, respectively. The developed biosensor can be successfully used in the early detection of non-small cell lung cancer (NSCLC) by directly measuring miR-141 in human plasma samples. This novel DNA-biosensor is of promise in early sensitive clinical diagnosis of cancers with miR-141 as its biomarker.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-022-05301-wDOI Listing

Publication Analysis

Top Keywords

dna-biosensor
5
detection
5
mir-141
5
ratiometric electrochemical
4
electrochemical dna-biosensor
4
dna-biosensor detection
4
detection mir-141
4
mir-141 sensitive
4
sensitive biosensor
4
biosensor detection
4

Similar Publications

Nanozyme-based dual-mode DNA biosensor for self-powered ultrasensitive detection of sulfate-reducing bacteria.

Biosens Bioelectron

January 2025

Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. Electronic address:

Sulfate-reducing bacteria (SRB) are recognized as significant contributors to microbiologically induced corrosion (MIC). Developing effective, economical, sensitive, and specific detection methods for SRB is crucial for understanding microbial corrosion mechanisms and for early monitoring. In this study, a novel dual-mode DNA biosensor was developed, utilizing a nanozyme-based fuel cell to enable self-powered detection of the DsrA gene in SRB, while demonstrating excellent sensitivity, specificity, and reliability.

View Article and Find Full Text PDF

Rapid indirect detection of N-lactoyl-phenylalanine using dual DNA biosensors based on solution-gated graphene field-effect transistor.

Biosens Bioelectron

January 2025

School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China. Electronic address:

As obesity rates continue to rise, there is an increasing focus on reducing obesity through exercise. People are becoming more aware of the importance of weight loss through physical activity. However, the effectiveness of exercise can vary significantly among individuals, making it challenging to evaluate its impact.

View Article and Find Full Text PDF

The Coronavirus Disease 2019 (COVID-19) recently emerged as a life-threatening global pandemic that has ravaged millions of lives. The affected patients are known to frequently register numerous comorbidities induced by COVID-19 such as diabetes, asthma, cardiac arrest, hypertension, and neurodegenerative diseases, to name a few. The expensiveness and probability of false negative results of conventional screening tests often delay timely diagnosis and treatment.

View Article and Find Full Text PDF

The challenge of increasing food production while maintaining environmental sustainability can be addressed by using biofertilizers such as Azospirillum, which can enhance plant growth and colonize more than 100 plant species. The success of this biotechnology depends on the amount of plant growth-promoting bacteria associated with the plant during crop development. However, monitoring bacterial population dynamics after inoculation requires time-consuming, laborious, and costly procedures.

View Article and Find Full Text PDF

Photo-controlled cascade DNA hybridization for amplified electrochemical biosensor with tunable sensing performance.

Anal Chim Acta

January 2025

College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China. Electronic address:

Background: Precise control of the biorecognition process in DNA biosensors, especially for those with signal amplification, remains a challenge. It is of great significance to introduce external stimuli into the DNA system for a controllable trigger of nucleic acid cascade amplification and further for excellent biosensors.

Results: In this study, a photo-initiated hybridization chain reaction (HCR) was designed for controllable and sensitive electrochemical biosensor via the incorporation of azobenzene moiety into the assembly unit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!