Allosteric regulation of proteins has been utilized to study various aspects of cell signaling, from unicellular events to organism-wide phenotypes. However, traditional methods of allosteric regulation, such as constitutively active mutants and inhibitors, lack tight spatiotemporal control. This often leads to unintended signaling consequences that interfere with data interpretation. To overcome these obstacles, researchers employed protein engineering approaches that enable tight control of protein function through allosteric mechanisms. These methods provide high specificity as well as spatial and temporal precision in regulation of protein activity in vitro and in vivo. In this review, we focus on the recent advancements in engineered allosteric regulation and discuss the various bioengineered allosteric techniques available now, from chimeric GPCRs to chemogenetic and optogenetic switches. We highlight the benefits and pitfalls of each of these techniques as well as areas in which future improvements can be made. Additionally, we provide a brief discussion on implementation of engineered allosteric regulation approaches, demonstrating that these tools can shed light on elusive biological events and have the potential to be utilized in precision medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2022.167620 | DOI Listing |
Protein Sci
January 2025
Department of Chemistry, Columbia University, New York, New York, USA.
The rapid identification of protein-protein interactions has been significantly enabled by mass spectrometry (MS) proteomics-based methods, including affinity purification-MS, crosslinking-MS, and proximity-labeling proteomics. While these methods can reveal networks of interacting proteins, they cannot reveal how specific protein-protein interactions alter protein function or cell signaling. For instance, when two proteins interact, there can be emergent signaling processes driven purely by the individual activities of those proteins being co-localized.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, The State Key Laboratory of Structural Chemistry, 155 Yangqiao Road West, 350002, Fuzhou, CHINA.
Macrocycles represent one important class of functional molecules, and dynamic macrocycles with the potential of cleavability, adaptability, and topological conversion are challenging. Herein we report photoswitchable allosteric and topological control of dynamic covalent macrocycles and further the use in guest binding and mechanically interlocked molecules. The manipulation of competing ring-chain equilibria and bond formation/scission within reaction systems enabled light-induced structural regulation over dithioacetal and thioacetal dynamic bonds, accordingly realizing bidirectional switching between crown ether-like covalent macrocycles and their linear counterparts.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, MS (Maharashtra), India. Electronic address:
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge due to the emergence of drug-resistant strains. This study targets Flavin-dependent thymidylate synthase (ThyX), an essential enzyme in the thymidylate biosynthesis pathway crucial for bacterial DNA replication. We utilized advanced computational techniques, including molecular dynamics (MD) simulations and interaction energy analysis, to examine the binding interactions and stability of various thiazole-thiadiazole compounds with Mtb ThyX.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Institute of Molecular Biology Department of Chemistry and Biochemistry 1229 University of Oregon Eugene, OR 97403. Electronic address:
The Par complex polarizes the plasma membrane of diverse animal cells using the catalytic activity of atypical Protein Kinase C (aPKC) to pattern substrates. Two upstream regulators of the Par complex, Cdc42 and Par-3, bind separately to the complex to influence its activity in different ways. Each regulator binds a distinct member of the complex, Cdc42 to Par-6 and Par-3 to aPKC, making it unclear how they influence one another's binding.
View Article and Find Full Text PDFOncogene
December 2024
Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
Recent studies suggest that glucocorticoid receptor (GR) activation can cause enzalutamide resistance in advanced prostate cancer (PCa) via functional bypass of androgen receptor (AR) signaling. However, the specific molecular mechanism(s) driving this process remain unknown. We have previously reported that the transcription factor TBX2 is over-expressed in castrate-resistant prostate cancer (CRPC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!