Bioinspired polydopamine (PDA) nanoparticles were synthesized and explored as functional compatibilizers in polyvinyl alcohol/starch (PVA/ST) matrix to develop high-performance multifunctional packaging film. The effect of the addition of PDA on the microstructural, mechanical, thermal, water vapor barrier, ultraviolet (UV)/high-energy blue light (HEBL) blocking, thermal insulating and antioxidant properties of PVA/ST composite films was fully investigated. Results demonstrated that the added PDA nanoparticles were evenly dispersed in the PVA/ST matrix, providing compact and dense nanocomposite films due to their compatibilization effect. Compared with virgin PVA/ST film, the resulting PVA/ST/PDA nanocomposite films exhibited greatly improved tensile strength, toughness, thermal stability, and water vapor barrier ability. Furthermore, the presence of PDA endowed PVA/ST composite film with excellent UV/HEBL blocking, thermal insulating as well as antioxidant functions. Thus, such high-performance multifunctional nanocomposite films hold the potential of protecting food quality against photothermal oxidative deterioration and extend food shelf life.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.04.221DOI Listing

Publication Analysis

Top Keywords

high-performance multifunctional
12
nanocomposite films
12
polyvinyl alcohol/starch
8
bioinspired polydopamine
8
pda nanoparticles
8
pva/st matrix
8
water vapor
8
vapor barrier
8
blocking thermal
8
thermal insulating
8

Similar Publications

Photocatalysis offers a powerful approach for water purification from toxic organics, hydrogen production, biosolids processing, and the conversion of CO into useful products. Further advancements in photocatalytic technologies depend on the development of novel, highly efficient catalysts and optimized synthesis methods. This study aimed to develop a laser synthesis technique for bismuth oxyhalide nanoparticles (NPs) as efficient and multifunctional photocatalysts.

View Article and Find Full Text PDF

Research on perovskite light-emitting diodes (PeLEDs) has primarily focused on modulating crystal growth to achieve smaller grain sizes and defect passivation using organic additives. However, challenges remain in controlling the intermolecular interactions between these organic additives and perovskite precursor ions for precise modulation of crystal growth. In this study, we synthesize two triphenylphosphine oxide (TPPO)-based multidentate additives: bidentate hexane-1,6-diyl-bis(oxy-4-triphenylphosphine oxide) (2-TPPO) and tetradentate pentaerythrityl-tetrakis(oxy-4-triphenylphosphine oxide) (4-TPPO).

View Article and Find Full Text PDF

Hydrolysis of 2D Nanosheets Reverses Rheumatoid Arthritis Through Anti-Inflammation and Osteogenesis.

Adv Mater

December 2024

Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science School of Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.

Rheumatoid arthritis (RA) is a kind of inflammation homeostasis disorder that dysfunctions the joints. Clinically, medications against RA focus simply on mitigating the focal inflammation, without considering pro-osteogenesis re-modeling of the bone microenvironment. In the present work, 2D layered calcium disilicide nanoparticles (CSNs) are fabricated by facile aqueous exfoliation.

View Article and Find Full Text PDF

Highly Efficient Electrode of Dirac Semimetal PtTe for MoS-Based Field Effect Transistors.

ACS Appl Mater Interfaces

December 2024

Beijing Academy of Quantum Information Sciences, Beijing 100193, China.

Two-dimensional van der Waals (vdW) layered materials not only are an intriguing fundamental scientific research platform but also provide various applications to multifunctional quantum devices in the field-effect transistors (FET) thanks to their excellent physical properties. However, a metal-semiconductor (MS) interface with a large Schottky barrier causes serious problems for unleashing their intrinsic potentials toward the advancements in high-performance devices. Here, we show that exfoliated vdW Dirac semimetallic PtTe can be an excellent electrode for electrons in MoS FETs.

View Article and Find Full Text PDF

Flexible, stretchable multifunctional silver nanoparticles-decorated cotton textile based on amyloid-like protein aggregation for electrothermal and photothermal dual-driven wearable heater.

Int J Biol Macromol

December 2024

State Key Laboratory for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:

The design of multifunctional, high-performance wearable heaters utilizing textile substrates has garnered increasing attention, particularly in the development of body temperature and health monitoring devices. However, fabricating these multifunctional wearable heaters while simultaneously ensuring flexibility, air permeability, Joule heating performance, electromagnetic interference (EMI) shielding and antibacterial properties remains a significant challenge. This study utilizes phase transition lysozyme (PTL) film-mediated electroless deposition (ELD) technology to deposit silver nanoparticles (Ag NPs) on the cotton fabrics surface in a mild aqueous solution at room temperature, thereby constructing a wearable heater with long-term stability, high conductivity, and exceptional photothermal properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!