Sericin, an industrial waste of the silk industry, is a promising precursor for adsorbent preparation. In this work, an efficient and novel sericin-derived carbon aerogel (SCA) was used to improve the adsorption efficiency of oils and organic solvents. The SCA demonstrated a high-efficiency sorption capacity of not only soybean oil (adsorption capacity reached up to 167.69 times its weight) but also chloroform and methylene chloride (adsorption capacity of 193.67 g/g and 173.25 g/g respectively). It is observed that SCA could be regenerated multiple times through combustion and after five cycles, its adsorbability to ethanol, dimethyl sulfoxide, and soybean oil remained high at 59.08 g/g, 59.34 g/g, and 137.36 g/g, respectively. The physical and chemical characteristics of sericin and SCA were analyzed using Scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Raman spectra and Fourier transform infrared spectroscopy (FTIR) analysis. The results suggest that SCA is an adsorbent with excellent properties and can significantly increase the adsorption capacity of oils and organic solvents. The overall results indicate that SCA is effectively used as an adsorbent for the adsorption of oils and organic solvents, which will contribute to reduce the discharge of sericin-containing wastewater and alleviate pollution caused by oil and organic solvent leakage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134745DOI Listing

Publication Analysis

Top Keywords

oils organic
16
organic solvents
16
adsorption capacity
12
sericin-derived carbon
8
carbon aerogel
8
soybean oil
8
adsorption
6
sca
6
organic
5
efficient recyclable
4

Similar Publications

The extraction of plant essential oils (EOs) and analysis by gas chromatography coupled to mass spectrometry (GC-MS) are standard methods when studying aromatic plants and the chemical composition of EOs. Here, two simple methods for the extraction of EO compounds from leaves of Thymus vulgaris are described. Organic solvent extraction and solid-phase microextraction (SPME), respectively, are used and the results of the GC-MS analyses are compared.

View Article and Find Full Text PDF

Supramolecular oleogels, in which low-molecular weight oleogelators self-assemble into various nanostructures through non-covalent interactions, have witnessed increasing research activity in various fields of science, including food, cosmetics or remediation of marine oil spills. Herein, we report a simple scalable and environmentally friendly carbohydrate-based oleogelator, namely, the sodium salt of ,'-dimethyl β- glucosyl barbiturate (GlcBMe) that self-assembles through sonication to induce the gelation of polar organic solvent and later of non-polar vegetable oils by cationic exchange with quaternary ammonium surfactants. Water-soluble GlcBMe was capable of forming self-assembled fibrillar network bridging insoluble particles in the oil by sonication in the presence of a small amount of water.

View Article and Find Full Text PDF

Environmental concerns are rising the need to find cost-effective alternatives to fossil oils. In this sense, short-chain fatty acids (SCFAs) are proposed as carbon source for microbial oils production that can be converted into oleochemicals. This investigation took advantage of the outstanding traits of recombinant Yarrowia lipolytica strains to assess the conversion of SCFAs derived from real digestates into odd-chain fatty acids (OCFA).

View Article and Find Full Text PDF

Based on the observation that urea, water, and ethyl esters (EE) can form gypsum-like mixtures, this study explored the feasibility of employing water as a solvent for urea in the urea complexation method to enrich n-3 polyunsaturated fatty acids with docosahexaenoic acid (DHA)-containing ethyl esters (DHA- EE) from Crypthecodinium cohnii as the material. Under the conditions of a urea/DHA-EE ratio of 3, a water/DHA-EE ratio of 0.75, a mixing temperature of 65℃, and a cooling temperature of 20℃, a concentrate containing over 90% DHA was achieved.

View Article and Find Full Text PDF

Characterisation and anaerobic digestion of fat, oil and grease (FOG) waste from wastewater treatment plants.

J Environ Manage

January 2025

Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy.

The materials removed in the oil separation units of wastewater treatment plants can be referred to as fat, oil and grease (FOG) waste. FOG waste accumulation in treatment plants can cause clogging of pipes, production of excessive scums and foams, and negatively affect air/liquid oxygen transfer. While conventional disposal routes of this material can be limited by its water and organic content, FOG can represent a source of bio-energy other than bio-diesel production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!