AI Article Synopsis

  • Peatlands store large amounts of carbon, but climate change may cause this carbon to be released, necessitating a better understanding of fungal communities that decompose organic matter in these environments.
  • Research conducted on 54 soils from six peatlands in China revealed distinct fungal community structures and assembly processes in above-water table (AWT) versus below-water table (BWT) layers.
  • The study found that while stochastic processes largely govern fungal community assembly, deterministic processes became more influential in the BWT due to environmental factors like moisture and temperature, highlighting depth-dependent community dynamics.

Article Abstract

Peatlands have accumulated enormous amounts of carbon over millennia, and climate changes threatens the release of this carbon into the atmosphere. Fungi are crucial drivers of global carbon cycling because they are the principal decomposer of organic matter in peatlands. However, the fungal community composition and ecological preferences in peat remain unclear, which restricts our ability to evaluate the role of the fungal community in peat biogeochemical functions. We investigated 54 soils from 6 low-temperature peatlands across China to fill this knowledge gap. The peat was divided into above-water table (AWT) and below-water table (BWT) layers based on the water table fluctuation. We investigated fungal community assembly processes and drivers for each peat layer. The results showed that fungal communities differed significantly among peat layers. The relative abundance of symbiotrophs was significantly higher in the AWT (17.4%) than in the BWT (9.0%), while the abundances of yeast and litter saprotrophs were obviously lower in the AWT than in the BWT. Our results revealed that the assemblage of both fungal taxonomic and phylogenetic communities was mainly governed by stochastic processes in both AWT (87.8%) and BWT (58.6%) layers. However, in the BWT, the relative importance of deterministic processes (28.4%) significantly increased, indicating a potential deterministic environmental selection induced by permanently anaerobic condition. Mean annual precipitation and mean annual temperature were the most critical drives for the assemblage of the fungal community in the BWT. These observations collectively indicate that fungal community assembly is depth-dependent, implying different community assembly mechanisms and ecological functions along the peat profile. These findings highlight the importance of climate driven deep peat fungal community composition assemblages and suggest the potential to project the changes in fungal diversity with ongoing climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2022.113312DOI Listing

Publication Analysis

Top Keywords

fungal community
24
community assembly
12
peat
9
fungal
9
community composition
8
assemblage fungal
8
community
7
bwt
6
homogeneous selection
4
selection stronger
4

Similar Publications

Contrasting responses of soil bacterial and fungal networks to photovoltaic power station.

Front Microbiol

December 2024

Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

The rapid expansion of solar photovoltaic (PV) power generation raises concerns regarding its impact on terrestrial ecosystems. Although the influence of PV panels on soil conditions and plant biomass is acknowledged, their effects on the assembly processes and co-occurrence networks of soil microbial communities remain understudied. Clarifying this influence is crucial for understanding the effects of photovoltaic panels on soil ecosystem functions.

View Article and Find Full Text PDF

Straw incorporation can improve soil fertility and soil structure. While numerous studies have explored the immediate impacts of straw return on soil properties and crop production, the legacy effects of long-term straw return remain less understood. In this study, the straw returning soil of a continuous 15 years (SS) and non-straw returning soil (NS) were collected from Dahe Experimental Station of Hebei Academy of Agriculture and Forestry Sciences in China.

View Article and Find Full Text PDF

Reusing treated wastewater (TWW) for crop irrigation has shown to provide environmental and economic benefits as well as drawbacks. This study was conducted using soils collected from a wastewater reuse facility in Tallahassee, FL, mainly to elucidate the long-term impact(s) of TWW irrigation on soil microbiome and nutrient status. Approximately 890 ha of land have been spray-irrigated with TWW since the 1980's to grow fodder crops.

View Article and Find Full Text PDF

Introduction: The Sanxingdui site (Sichuan, China) is the typical representative of the ancient Shu culture, which lasts from the late Neolithic to early Western Zhou. The sacrificial pits are located in the core region of Sanxingdui site, and numerous artifacts are unearthed including ivory, seashells, bronzes, pottery, jade, stone, gold, bone, and horn products. The function of the pits and buried artifacts has always been the focus, but the microbiome around artifacts attracts less attention.

View Article and Find Full Text PDF

The bacterial microbiome of the ant has been well characterized across body regions and maturation levels. However, potential effects of entomopathogens on the gut microbiome, and the fungal communities therein, are yet to be assessed. Additionally, the mycobiome remains often overlooked despite playing a vital role in gut ecology with potential implications for health and infection outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!