Sirtuin 7 serves as a promising therapeutic target for cardiorenal diseases.

Eur J Pharmacol

Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China. Electronic address:

Published: June 2022

Cardiovascular disorders and associated renal diseases account for the main cause of morbidity and mortality worldwide, necessitating the development of novel effective approaches for the prevention and treatment of cardiorenal diseases. Mammalian sirtuins (SIRTs) function as nicotinamide adenine dinucleotide (NAD)-dependent protein/histone deacetylases. Seven members of SIRTs share a highly invariant catalytic core domain responsible for the specific enzymatic activity. Intriguingly, the broad distribution of SIRTs and alternative isoforms implicate its distinct functions in diverse cardiac and renal cells and tissue types. Notably, SIRT7 has been shown to exert beneficial effects in cardiorenal physiology and pathophysiology via modulation of senescence, DNA damage repair, ribosomal RNA synthesis, protein biosynthesis, angiogenesis, apoptosis, superoxide generation, cardiorenal metabolism, and dysfunction. Furthermore, SIRT7 has emerged as a critical modulator of a broad range of cellular activities including oxidative stress, inflammation response, endoplasmic reticulum stress, and mitochondrial homeostasis, which are all of great significance in postponing the progression of cardiorenal diseases. More importantly, SIRT7 has been implicated in cardiorenal hypertrophy, fibrosis, remodeling, heart failure, atherosclerosis as well as renal acid-base and electrolyte homeostasis as an essential regulator. In this article, we focus on the involvement in cardiorenal physiology and pathophysiology, diverse actions and underlying mechanisms of the SIRT7 signaling, highlighting its updated research progress in heart failure, atherosclerosis, diabetic nephropathy and other cardiorenal diseases. Targeting SIRT7 signaling could be potentially exploited as a therapeutic strategy aiming to prevent and treat cardiorenal diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2022.174977DOI Listing

Publication Analysis

Top Keywords

cardiorenal diseases
20
cardiorenal
9
cardiorenal physiology
8
physiology pathophysiology
8
heart failure
8
failure atherosclerosis
8
sirt7 signaling
8
diseases
6
sirt7
5
sirtuin serves
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!