Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Road traffic injuries continue to be a leading cause of death around the world. Rapid emergency response is a key factor in improving occupant outcomes. Over the past ten years, Injury Severity Prediction (ISP) models have been developed and deployed to assist in effective dispatch of emergency medical services (EMS). Prior versions of ISP have relied on driver-based scenarios that are not relevant in many of the possible autonomous vehicle (AV) contexts. This paper describes the development and validation of occupant-based ISP models that predict injury severity for specific vehicle seat positions. Models show improved predictive performance, sensitivity 80% and specificity over 95%, for front row occupants. Second row occupant models have similar specificity, but sensitivity scores dropped due to occupant heterogeneity and small sample sizes of seriously injured occupants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4271/2021-22-0002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!