As part of the efforts to contain the pandemic, researchers around the world have raced to develop testing platforms to detect the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the Coronavirus disease 2019 (COVID-19). Within the different detection platforms studied, the field effect transistor (FET) is a promising device due to its high sensitivity and fast detection capabilities. In this work, a graphene-based FET which uses a boron and nitrogen co-doped graphene oxide gel (BN-GO gel) transducer functionalized with nucleoprotein antibodies, has been investigated for the detection of SARS-CoV-2 nucleocapsid (N)-protein in buffer. This biosensor was able to detect the viral protein in less than 4 min, with a limit of detection (LOD) as low as 10 ag/mL and a wide linear detection range stretching over 11 orders of magnitude from 10 ag/mL-1 μg/mL. This represents the lowest LOD and widest detection range of any COVID-19 sensor and thus can potentially enable the detection of infected individuals before they become contagious. In addition to its potential use in the COVID-19 pandemic, our device serves as a proof-of-concept of the ability of functionalized BN-GO gel FETs to be used for ultrasensitive yet robust biosensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9052636 | PMC |
http://dx.doi.org/10.1016/j.bios.2022.114331 | DOI Listing |
J Pediatr Nurs
January 2025
Faculty of Nursing, Yarmouk University, Irbid, Jordan. Electronic address:
Background: Type 1 diabetes is the most common endocrine health condition among youth. Healthcare professionals must consider evidence-based guidelines in managing children and adolescents with diabetic ketoacidosis (DKA). The current study aims to assess the outcomes of implementing clinical guidelines by the American Diabetes Association to manage DKA among pediatrics in an emergency department in Palestine.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Laboratory of Organic Chemistry, Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road, Tarsadi 394650 Surat Gujarat India. Electronic address:
A single molecule sensor for several analytes is indeed desired by the scientists around the world due to obvious advantages. In this report we present a new class of Lophine incorporated azo dyes that has capacity of differential colorimetric detection of several metal ions. Interestingly the sensor was found to have pH dependent selective response towards several metals.
View Article and Find Full Text PDFSurgery
January 2025
Department of Biomedical Sciences, Humanitas University, Milan, Italy; Department of Hepatobiliary & General Surgery, IRCCS Humanitas Research Hospital, Milan, Italy. Electronic address:
Background: Communicating vessels among hepatic veins in patients with tumors invading/compressing hepatic veins at their caval confluence facilitate new surgical solutions. Although their recognition by intraoperative ultrasound has been described, the possibility of preoperative detection still remains uncertain. We aimed to develop a model to predict their presence before surgery.
View Article and Find Full Text PDFNanotechnology
January 2025
Xidian University, Room 120, G building, Southern campus of Xidian University, Xi'an, Shaanxi, 710126, CHINA.
The utilization of dual-working-electrode mode of interdigitated array (IDA) electrodes and other two-electrode systems has revolutionized electrochemical detection by enabling the simultaneous and independent detection of two species, accompanied by the exhibition of unique characteristics. In contrast to conventional dual-potential electrodes, such as the rotating ring disk electrodes (RRDE), IDA electrodes demonstrate analogous yet vastly improved performance, characterized by remarkable collection efficiency and sensitivity. Notably, due to the distinctive microscale structure of IDA electrode, the special "feedback" effect makes IDA a unique signal amplifier.
View Article and Find Full Text PDFNanotechnology
January 2025
School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, 12 Qinghe Xiaoying East Road, Xisanqi Street, Haidian District, Beijing, Beijing, 100192, CHINA.
Lead-free cesium bismuth iodide (CsBiI) perovskite exhibits extraordinary optoelectronic properties and attractive potential in various optoelectronic devices, especially the application for photodetectors. However, most CsBiIphotodetectors demonstrated poor detection performance due to the difficulty in obtaining high-quality polycrystalline films. Therefore, it makes sense to modulate the preparation of high-quality CsBiIpolycrystalline films and expand its applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!