Variation in the (220) lattice spacing of Si due to specimen processing for transmission electron microscopy (TEM) was experimentally evaluated by comparing the measured lattice spacings of crystalline specimens processed by crushing, mechanical polishing only, and combined mechanical and Ar ion polishing. Although distinct variation in the (220) lattice spacing between the Si specimens processed by crushing and by mechanical polishing only is not observed, the (220) lattice spacing of specimens prepared by combined mechanical and Ar ion polishing imply increasing tendency with increasing Ar ion beam irradiation time. Moreover, the (220) lattice spacing measured from the outermost region of the specimen edge tends to be approximately 3% to 5% larger than that measured from the inner region, irrespective of the processing method. These results demonstrate that differences in the processing conditions of Si specimens and in the measurement location of the Si lattice spacing can be major component of the measurement uncertainty in sub-nanometer metrology using TEM with magnification calibration by the Si lattice spacing. When attempting to apply the lattice spacing of Si as a reference with traceability to the International System of Units for TEM magnification calibration in sub-nanometer metrology, the results suggest that the effect of specimen processing on variation in the lattice spacing is not negligible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2022.113537 | DOI Listing |
J Chem Inf Model
December 2024
Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States.
Drug efficacy often correlates better with dissociation kinetics than binding affinity alone. To study binding kinetics computationally, it is necessary to identify all of the possible ligand dissociation pathways. The site identification by ligand competitive saturation (SILCS) method involves the precomputation of a set of maps (FragMaps), which describe the free energy landscapes of typical chemical functionalities in and around a target protein or RNA.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA. Electronic address:
Microtubule (MT) function plasticity originates from its composition of α- and β-tubulin isotypes and the post-translational modifications of both subunits. Aspects such as MT assembly dynamics, structure, and anticancer drug binding can be modulated by αβ-tubulin heterogeneity. However, the exact molecular mechanism regulating these aspects is only partially understood.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Materials Science & Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Tantalum disulfide (1T-TaS), being a Mott insulator with strong electron correlation, is highlighted for diverse collective quantum states in the 2D lattice, including charge density wave (CDW), spin liquid, and unconventional superconductivity. The Mott physics embedded in the 2D triangular CDW lattice has raised debates on stacking-dependent properties because interlayer interactions are sensitive to van der Waals (vdW) spacing. However, control of interlayer distance remains a challenge.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Department of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia.
Brush-like graft copolymers (A-g-B), in which linear A-blocks are randomly grafted onto the backbone of a brush-like B-block, exhibit intense strain-stiffening and high mechanical strength on par with load-bearing biological tissues such as skin and blood vessels. To elucidate molecular mechanisms underlying this tissue-mimetic behavior, in situ synchrotron X-ray scattering was measured during uniaxial stretching of bottlebrush- and comb-like graft copolymers with varying densities of poly(dimethyl siloxane) and poly(isobutylene) side chains. In an undeformed state, these copolymers revealed a single interference peak corresponding to the average spacing between the domains of linear A-blocks arranged in a disordered, liquid-like configuration.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Institute of Physiology II, University Hospital Muenster, University of Muenster, Muenster 48149, Germany.
In muscle, titin proteins connect myofilaments together and are thought to be critical for contraction, especially during residual force enhancement (RFE) when steady-state force is elevated after an active stretch. We investigated titin's function during contraction using small-angle X-ray diffraction to track structural changes before and after 50% titin cleavage and in the RFE-deficient, titin mutant. We report that the RFE state is structurally distinct from pure isometric contractions, with increased thick filament strain and decreased lattice spacing, most likely caused by elevated titin-based forces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!