A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design, synthesis, and biological evaluation of histone deacetylase inhibitor with novel salicylamide zinc binding group. | LitMetric

Introduction: Histone deacetylases (HDACs) have emerged as important therapeutic targets for various diseases, such as cancer and neurological disorders. Although a majority of HDAC inhibitors use hydroxamic acids as zinc binding groups, hydroxamic acid zinc-binding groups suffer from poor bioavailability and nonspecific metal-binding properties, necessitating a new zinc-binding group. Salicylic acid and its derivatives, well-known for their therapeutic value, have also been reported to chelate zinc ions in a bidentate fashion. This drew our attention towards replacing hydroxamic acid with salicylamide as a zinc-binding group.

Methods: In this study, for the first time, compound 5 possessing a novel salicylamide zinc-binding group was synthesized and evaluated biologically for its ability to inhibit various HDAC isoforms and induce acetylation upon α-tubulin and histone H3 among MDA-MB-231 cells.

Results: Compound 5 exhibits selective inhibition against class I HDAC isoforms (HDAC1, 2, and 3) over class II and IV HDAC isoforms (HDAC4, 6, and 11). The exposure of MDA-MB-231 cells to compound 5 efficiently induced the acetylation of more histone H3 than α-tubulin, suggesting that compound 5 is a class I selective HDAC inhibitor. Moreover, the molecular docking study indicated that the salicylamide zinc-binding group of compound 5 coordinates the active zinc ion of class I HDAC2 in a bidentate fashion.

Conclusion: Overall, salicylamide represents a novel zinc-binding group for the development of class I selective HDAC inhibitors.

Graphical Abstract: (http://links.lww.com/MD/G668).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276175PMC
http://dx.doi.org/10.1097/MD.0000000000029049DOI Listing

Publication Analysis

Top Keywords

zinc-binding group
16
salicylamide zinc-binding
12
hdac isoforms
12
novel salicylamide
8
zinc binding
8
hydroxamic acid
8
class hdac
8
class selective
8
selective hdac
8
hdac
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!