Introduction: In radiotherapy, the presence of air gaps near a tumour can lead to underdose to the tumour. In this study, the impact of air gaps on dose to the surface was evaluated. 3D-printing was used to construct a Eurosil-4 Pink bolus customised to the patient and its dosimetric properties were compared with that of Paraffin wax bolus.
Methods: Surface dose was measured for flat sheets of Eurosil-4 Pink bolus with different thicknesses. Different air gap thicknesses were inserted between the bolus and the surface, and dose was measured for each air gap using 10 cm × 10 cm fields. This was repeated with the effective field size calculated from the patient plan. Surface dose was measured for varying angles of incidence. A customised chest phantom was used to compare dose for two customised Eurosil-4 Pink boluses, and commonly used Paraffin wax bolus.
Results: The surface dose was found to be highest for 1.1 cm thick bolus. The decrease in surface dose for the Eurosil-4 Pink bolus was minimal for the 10 cm × 10 cm field, but higher for the effective field size and larger angles of incidence. For instance, the dose was reduced by 6.2% as a result of 1 cm air gap for the effective field size and 60 degree angle of incidence. The doses measured using Gafchromic film under the customised Eurosil-4 Pink boluses were similar to that of the Paraffin wax bolus, and higher than prescribed dose.
Conclusions: The impact of air gaps can be significant for small field sizes and oblique beams. A customised Eurosil-4 Pink bolus has promising physical and dosimetric properties to ensure sufficient dose to the tumour, even for treatments where larger impact of air gaps is suspected.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071134 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267741 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!