Season-long infection of diverse hosts by the entomopathogenic fungus Batkoa major.

PLoS One

Department of Entomology, Cornell University, Ithaca, New York, United States of America.

Published: May 2022

Populations of the entomopathogenic fungus Batkoa major were analyzed using sequences of four genomic regions and evaluated in relation to their genetic diversity, insect hosts and collection site. This entomophthoralean pathogen killed numerous insect species from 23 families and five orders in two remote locations during 2019. The host list of this biotrophic pathogen contains flies, true bugs, butterflies and moths, beetles, and barkflies. Among the infected bugs (Order Hemiptera), the spotted lanternfly (Lycorma delicatula) is a new invasive planthopper pest of various woody plants that was introduced to the USA from Eastern Asia. A high degree of clonality occurred in the studied populations and high gene flow was revealed using four molecular loci for the analysis of population structure. We did not detect any segregation in the population regarding host affiliation (by family or order), or collection site. This is the first description of population structure of a biotrophic fungus-generalist in the entomopathogenic Order Entomophthorales. This analysis aimed to better understand the potential populations of entomopathogen-generalists infecting emerging invasive hosts in new ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070890PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261912PLOS

Publication Analysis

Top Keywords

entomopathogenic fungus
8
fungus batkoa
8
batkoa major
8
collection site
8
population structure
8
season-long infection
4
infection diverse
4
diverse hosts
4
hosts entomopathogenic
4
major populations
4

Similar Publications

Transmission of transgenic mosquito-killing fungi during copulation.

Sci Rep

January 2025

Institut de Recherche en Sciences de la Santé, IRSS, Bobo-Dioulasso, Burkina Faso.

Entomopathogenic fungi engineered to express insect-specific neurotoxins have demonstrated potential as microbial control agents against malaria mosquitoes. Currently, the primary application method is via direct contact of spores with indoor resting mosquitoes. However, many malaria-transmitting mosquitoes feed and rest outdoors.

View Article and Find Full Text PDF

Fungal evasion of immunity involves blocking the cathepsin-mediated cleavage maturation of the danger-sensing protease.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.

Entomopathogenic fungi play a critical role in regulating insect populations, and representative species from the and genera have been developed as eco-friendly biocontrol agents for managing agricultural insect pests. Relative to the advances in understanding antifungal immune responses in , knowledge of how fungi evade insect immune defenses remains limited. In this study, we report the identification and characterization of a virulence-required effector Fkp1 in .

View Article and Find Full Text PDF

The fungus Beauveria felina is often classified as one of the so-called good biocontrol agents. However, no information is available about the growth of this entomopathogenic fungus in the presence of other endophytic fungi, which are usually found in plant tissues. Effects of fungal interactions vary from inhibiting the activity of a biocontrol agent to stimulating its effect on the targeted pathogen.

View Article and Find Full Text PDF

Because the use of synthetic agrochemicals is generally not allowed in organic crop production systems, growers rely on natural substances and processes, such as microbial control, to suppress insect pests. Reduced tillage practices are associated with beneficial soil organisms, such as entomopathogenic fungi, that can contribute to the natural control of insect pests. The impacts of management, such as tillage, in a cropping system can affect soil biota in the current season and can also persist over time as legacy effects.

View Article and Find Full Text PDF

The entomopathogenic fungus isolate ICIPE 7 is being developed as an eco-friendly alternative to chemical acaricides in managing natural tick infestation on livestock. Its impact on tick infestation and tick-borne infections in cattle under natural conditions are yet unclear. We conducted a randomized controlled field trial to assess the safety and effects of Tickoff® (a formulation of isolate ICIPE 7) and the chemical acaricide Triatix® on tick infestation and incidence of and in extensively grazed zebu cattle in coastal Kenya.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!