Linc1548 Promotes the Transition of Epiblast Stem Cells Into Neural Progenitors by Engaging OCT6 and SOX2.

Stem Cells

Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China.

Published: March 2022

The transition of embryonic stem cells from the epiblast stem cells (EpiSCs) to neural progenitor cells (NPCs), called the neural induction process, is crucial for cell fate determination of neural differentiation. However, the mechanism of this transition is unclear. Here, we identified a long non-coding RNA (linc1548) as a critical regulator of neural differentiation of mouse embryonic stem cells (mESCs). Knockout of linc1548 did not affect the conversion of mESCs to EpiSCs, but delayed the transition from EpiSCs to NPCs. Moreover, linc1548 interacts with the transcription factors OCT6 and SOX2 forming an RNA-protein complex to regulate the transition from EpiSCs to NPCs. Finally, we showed that Zfp521 is an important target gene of this RNA-protein complex regulating neural differentiation. Our findings prove how the intrinsic transcription complex is mediated by a lncRNA linc1548 and can better understand the intrinsic mechanism of neural fate determination.

Download full-text PDF

Source
http://dx.doi.org/10.1093/stmcls/sxab003DOI Listing

Publication Analysis

Top Keywords

stem cells
16
neural differentiation
12
epiblast stem
8
oct6 sox2
8
embryonic stem
8
fate determination
8
transition episcs
8
episcs npcs
8
rna-protein complex
8
neural
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!