A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genome Engineering of the Fast-Growing toward a Live Vaccine Chassis. | LitMetric

AI Article Synopsis

  • * Researchers constructed a bacterial chassis by modifying its genome to remove certain virulence factors, which were then confirmed to lose specific harmful functions while maintaining normal growth.
  • * The engineered chassis was tested as a platform for producing foreign proteins related to a disease in goats, showing successful protein expression, indicating it could be used to develop vaccines against important mycoplasma diseases.

Article Abstract

Development of a new generation of vaccines is a key challenge for the control of infectious diseases affecting both humans and animals. Synthetic biology methods offer new ways to engineer bacterial chassis that can be used as vectors to present heterologous antigens and train the immune system against pathogens. Here, we describe the construction of a bacterial chassis based on the fast-growing , and the first steps toward its application as a live vaccine against contagious caprine pleuropneumonia (CCPP). To do so, the genome was cloned in yeast, modified by iterative cycles of Cas9-mediated deletion of loci encoding virulence factors, and transplanted back in subsp. recipient cells to produce the designed chassis. Deleted genes encoded the glycerol transport and metabolism systems GtsABCD and GlpOKF and the Mycoplasma Ig binding protein-Mycoplasma Ig protease (MIB-MIP) immunoglobulin cleavage system. Phenotypic assays of the chassis confirmed the corresponding loss of HO production and IgG cleavage activities, while growth remained unaltered. The resulting mycoplasma chassis was further evaluated as a platform for the expression of heterologous surface proteins. A genome locus encoding an inactivated MIB-MIP system from the CCPP-causative agent subsp. was grafted in replacement of its homolog at the original locus in the chassis genome. Both heterologous proteins were detected in the resulting strain using proteomics, confirming their expression. This study demonstrates that advanced genome engineering methods are henceforth available for the fast-growing , facilitating the development of novel vaccines, in particular against major mycoplasma diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9128628PMC
http://dx.doi.org/10.1021/acssynbio.2c00062DOI Listing

Publication Analysis

Top Keywords

genome engineering
8
live vaccine
8
bacterial chassis
8
chassis
7
genome
5
engineering fast-growing
4
fast-growing live
4
vaccine chassis
4
chassis development
4
development generation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!