Iron-Catalyzed Intramolecular Arene C(sp )-H Amidations under Mechanochemical Conditions.

Angew Chem Int Ed Engl

Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany.

Published: July 2022

In a ball mill, FeBr -catalyzed intramolecular amidations lead to 3,4-dihydro-2(1H)-quinolinones in good to almost quantitative yields. The reactions do not require a solvent and are easy to perform. No additional ligand is needed for the iron catalyst. Both 4-substituted aryl and β-substituted dioxazolones provide products with high selectivity. Mechanistically, an electrophilic spirocyclization followed by C-C migration explains the formation of rearranged products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401578PMC
http://dx.doi.org/10.1002/anie.202204874DOI Listing

Publication Analysis

Top Keywords

iron-catalyzed intramolecular
4
intramolecular arene
4
arene csp
4
csp amidations
4
amidations mechanochemical
4
mechanochemical conditions
4
conditions ball
4
ball mill
4
mill febr
4
febr -catalyzed
4

Similar Publications

Iron-Catalyzed SO-Retaining Smiles Rearrangement through Decarboxylation.

Org Lett

December 2024

Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China.

Radical Smiles rearrangements have emerged as powerful methodologies for constructing carbon-carbon bonds through intramolecular radical addition and fragmentation under milder conditions, with SO released as a byproduct. However, SO-retaining Smiles rearrangements, which can yield valuable alkyl sulfone derivatives, have been scarcely explored. In this study, we present an unprecedented iron-catalyzed SO-retaining Smiles rearrangement initiated by the decarboxylation of aliphatic carboxylic acids.

View Article and Find Full Text PDF

Intramolecular C-H Oxidation in Iron(V)-oxo-carboxylato Species Relevant in the γ-Lactonization of Alkyl Carboxylic Acids.

ACS Catal

September 2024

Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.

High-valent oxoiron species have been invoked as oxidizing agents in a variety of iron-dependent oxygenases. Taking inspiration from nature, selected nonheme iron complexes have been developed as catalysts to elicit C-H oxidation through the mediation of putative oxoiron(V) species, akin to those proposed for Rieske oxygenases. The addition of carboxylic acids in these iron-catalyzed C-H oxidations has proved highly beneficial in terms of product yields and selectivities, suggesting the direct involvement of iron(V)-oxo-carboxylato species.

View Article and Find Full Text PDF

Here we report an iron-complex-catalyzed synthesis of various mono- and di-substituted quinolin-2(1)-ones achieved the intramolecular acceptorless dehydrogenative cyclization of amido-alcohols. This approach for the synthesis of N-heterocycles has provided access to underdescribed disubstituted quinolinones and represents an alternative to the well-known palladium-catalyzed coupling reactions.

View Article and Find Full Text PDF

Multisubstituted furans occupy a pivotal position within the realms of synthetic chemistry and pharmacological science due to their distinctive chemical configurations and inherent properties. We herein introduce a tandem difunctionalization protocol of alcohols for the efficient synthesis of multisubstituted 2,3-dihydrofurans and γ-butyrolactones through the combination of photocatalysis and iron catalysis under mild conditions. Photoredox alcohol α-C(sp)-H activation and Pinner-type intramolecular cyclization are two key processes.

View Article and Find Full Text PDF

Enantioselective total synthesis of (‒)-lucidumone enabled by tandem prins cyclization/cycloetherification sequence.

Nat Commun

March 2024

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China.

The Ganoderma meroterpenoids are a growing class of natural products with architectural complexity, and exhibit a wide range of biological activities. Here, we report an enantioselective total synthesis of the Ganoderma meroterpenoid (‒)-lucidumone. The synthetic route features several key transformations, including a) a Cu-catalyzed enantioselective silicon-tethered intramolecular Diels-Alder cycloaddition to construct the highly functionalized bicyclo[2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!