Effect of clamping force on distortion of the optical surface of monochromators during assembly.

J Synchrotron Radiat

Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, United Kingdom.

Published: May 2022

AI Article Synopsis

  • Diamond Light Source is transitioning to a fourth-generation light source, which demands higher performance from its optical components.
  • The increasing power densities and limited space require a deeper understanding of optical assembly and uniformity in the process.
  • A study simulating bolt pretension during monochromator assembly shows that uneven clamping forces can lead to skewed distortion of the optical surface, emphasizing the need to consider clamping force effects.

Article Abstract

As Diamond Light Source embraces the move towards becoming a fourth-generation light source its optics will be required to perform under increasingly demanding conditions. Foremost amongst these conditions will be the increasing power densities the optics are subjected to and the reducing real estate they have to perform in. With these new challenges comes the need for greater understanding of how optics are assembled and how consistently the activity is carried out. In this paper, the effect of bolt pretension during assembly of monochromators on distortion of the optical surface is investigated through numerical simulation. The results reveal skewed convex distortion of the optical surface in the meridional direction when uneven clamping force is applied, highlighting the importance of taking the potential for distortion of the optical surface due to clamping force into consideration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070701PMC
http://dx.doi.org/10.1107/S1600577522003149DOI Listing

Publication Analysis

Top Keywords

distortion optical
16
optical surface
16
clamping force
12
light source
8
distortion
4
force distortion
4
optical
4
surface
4
surface monochromators
4
monochromators assembly
4

Similar Publications

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

Enhanced Neural Architecture for Real-Time Deep Learning Wavefront Sensing.

Sensors (Basel)

January 2025

Free-Space Optical Communication Technology Research Center, Harbin Institute of Technology, Harbin 150001, China.

To achieve real-time deep learning wavefront sensing (DLWFS) of dynamic random wavefront distortions induced by atmospheric turbulence, this study proposes an enhanced wavefront sensing neural network (WFSNet) based on convolutional neural networks (CNN). We introduce a novel multi-objective neural architecture search (MNAS) method designed to attain Pareto optimality in terms of error and floating-point operations (FLOPs) for the WFSNet. Utilizing EfficientNet-B0 prototypes, we propose a WFSNet with enhanced neural architecture which significantly reduces computational costs by 80% while improving wavefront sensing accuracy by 22%.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is a progressive, chronic eye disease with no permanent cure currently available. Symptoms of the disease, including distorted and blurred vision and gradual loss of central vision, significantly aggravate patients' daily functioning. The purpose of this study was to assess the acceptance of the disease among patients diagnosed with neovascular age-related macular degeneration before treatment and after receiving seven intravitreal injections and to determine how it was related to the values of visual parameters.

View Article and Find Full Text PDF

Objects project different images when viewed from varying locations, but the visual system can correct perspective distortions and identify objects across viewpoints. This study investigated the conditions under which the visual system allocates computational resources to construct view-invariant, extraretinal representations, focusing on planar symmetry. When a symmetrical pattern lies on a plane, its symmetry in the retinal image is degraded by perspective.

View Article and Find Full Text PDF

Interfacial Strain-Driven Large Topological Hall Effects in Supermalloy Thin Films with Noncoplanar Spin Textures.

ACS Appl Mater Interfaces

January 2025

School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.

Materials exhibiting topological transport properties, such as a large topological Hall resistivity, are crucial for next-generation spintronic devices. Here, we report large topological Hall resistivities in epitaxial supermalloy (NiFeMo) thin films with [100] and [111] orientations grown on single-crystal MgO (100) and AlO (0001) substrates, respectively. While X-ray reciprocal maps confirmed the epitaxial growth of the films, X-ray stress analyses revealed large residual strains in the films, inducing tetragonal distortions of the cubic NiFeMo unit cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!