Objective: High spatial and temporal resolution contrast-enhanced magnetic resonance angiography (MRA) with gadolinium-based contrast agents (GBCAs) at standard dose offers both detailed anatomic information on both arterial and venous vessels and hemodynamic characteristics. Several preclinical and clinical dynamic 3-dimensional (3D) MRA studies that focused on arterial vessels only proposed that high image quality may also be achieved with significantly reduced GBCA doses, calling into question the need to use standard doses. A systematic analysis of GBCA doses and resulting image quality for both arteries and veins has not yet been performed. The purpose of this study was therefore to systematically analyze dose-dependent vascular enhancements in dynamic 3D-MRA of the thoracoabdominal vasculature at 1.5 T in an animal model to determine the optimal contrast agent protocol for optimized vascular assessment.

Materials And Methods: The vascular enhancement in thoracoabdominal dynamic 3D-MRA (time-resolved angiography with interleaved stochastic trajectories, TWIST at 1.5 T) was interindividually and intraindividually compared in 5 anesthetized Göttingen minipigs using gadobutrol at the standard dose (0.1 mmol/kg body weight, ie, 0.1 mL/kg) and at reduced doses (0.08, 0.06, 0.04, 0.02 mmol/kg) in a randomized order. All injections were performed at 2 mL/s followed by 20 mL saline. Images were quantitatively analyzed, measuring signal intensities in 5 regions that covered the passage of the GBCA through the body at different representative stages of circulation (pulmonary, arterial, and venous system). The evaluation of GBCA dose-dependent signal intensity changes in the different vascular regions was performed by linear regression analysis.The qualitative image analysis of dynamic 3D-MRA by 3 independent radiologists included the visibility of 25 arterial and venous vessel segments at different stages of GBCA passage. Possible quality losses were statistically tested by comparing image quality ratings at the reduced dose with that of the standard dose using Friedman test followed by Dunn post hoc test for multiple comparison. Significance was stated at P < 0.05.

Results: Quantitative analysis revealed shorter time-to-peak intervals and bolus durations in line with decreasing GBCA dose and volume in all vessels. Although the peak signal was almost independent of the administered GBCA dose at the level of the pulmonary trunk, a linear signal decrease in the abdominal aorta ( r2 = 0.96), the renal arteries ( r2 = 0.99), the inferior vena cava ( r2 = 0.99), and the portal vein ( r2 = 0.97) was observed. Cumulative analysis of arterial segments revealed significantly lower image quality at doses below 40% of the standard dose, whereas in venous segments, significantly lower image quality was observed at doses below 60% of the standard dose.

Conclusions: In dynamic 3D-MRA at 1.5 T, dose reduction leads to a signal loss that is most pronounced in the venous system and results in significantly lower image quality according to the dose and vessels of interest. Careful dose reduction is thus required according to the specific diagnostic needs. For dynamic 3D-MRA of the arterial and venous system, GBCA doses of at least 60% of the standard dose up to the full dose are preferable, whereas 40% of the standard dose seems feasible if only the arterial system is to be imaged.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RLI.0000000000000882DOI Listing

Publication Analysis

Top Keywords

image quality
28
standard dose
24
dynamic 3d-mra
20
arterial venous
16
dose
14
dose reduction
12
gbca doses
12
venous system
12
lower image
12
contrast agent
8

Similar Publications

RetinaRegNet: A zero-shot approach for retinal image registration.

Comput Biol Med

January 2025

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32610, United States; Department of Medicine, University of Florida, Gainesville, FL, 32610, United States; Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, 32610, United States; Intelligent Clinical Care Center, University of Florida, Gainesville, FL, 32610, United States. Electronic address:

Retinal image registration is essential for monitoring eye diseases and planning treatments, yet it remains challenging due to large deformations, minimal overlap, and varying image quality. To address these challenges, we propose RetinaRegNet, a multi-stage image registration model with zero-shot generalizability across multiple retinal imaging modalities. RetinaRegNet begins by extracting image features using a pretrained latent diffusion model.

View Article and Find Full Text PDF

Design, Synthesis, and Imaging of a Stable Xanthene-Based Dye with NIR-II Emission up to 1450 nm.

Anal Chem

January 2025

Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China.

The development of long-wavelength near-infrared II (NIR-II, 900-1700 nm) dyes is highly desirable but challenging. To achieve both red-shifted absorption/emission and superior imaging capabilities, a donor-acceptor-donor (D-A-D) xanthene core was strategically modified by extending π-conjugated double bonds and enhancing electron-donating properties. Two dyes named and were synthesized and exhibited notably red-shifted absorption/emission peaks at 942/1250 and 1098/1450 nm, respectively.

View Article and Find Full Text PDF

Hypochlorous Acid-Activatable NIR Fluorescence/Photoacoustic Dual-Modal Probe with High Signal-to-Background Ratios for Imaging of Liver Injury and Plasma Diagnosis of Sepsis.

ACS Sens

January 2025

Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.

Hypochlorous acid can be employed as a biomarker for blood infection (such as sepsis) and tissue damage (such as drug-induced liver injury, DILI), and the diagnosis of tissue damage or blood infection can be achieved through the detection of hypochlorous acid in relevant biological samples. Considering the complex environment and the diverse interferences in living organisms and blood plasma, developing new detection methods for HClO with high signal-to-background ratios is particularly important, and it can improve the accuracy of detection and quality of imaging based on a higher contrast, which makes the detection of HClO clearer and more accurate. Here, based on the advantages of the NIR fluorescence/photoacoustic dual-modal probe, we reported a hypochlorous acid-activatable NIR fluorescence/photoacoustic dual-modal probe (NIRF-PA-HClO) based on the spirolactam ring-opening strategy in this paper.

View Article and Find Full Text PDF

Introduction: Hypertension is the leading noncommunicable disease case affecting 1.28 billion individuals worldwide, with most cases located in low- and middle-income countries. While there are numerous techniques for treating mild to moderate hypertension, properly controlling severe or resistant hypertension poses substantial challenges.

View Article and Find Full Text PDF

Aims: The REDUCE-AMI trial showed that beta-blockers in patients with preserved left ventricular ejection fraction (LVEF) after acute myocardial infarction (AMI) had no effect on mortality or cardiovascular outcomes. The aim of this substudy was to evaluate whether global longitudinal strain (GLS) is a better prognostic marker than LVEF, and if beta-blockers have a beneficial effect in patients with decreased GLS.

Methods And Results: REDUCE-AMI was a registry-based randomized clinical trial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!