2D-Topology-Seeded Graphitization for Highly Thermally Conductive Carbon Fibers.

Adv Mater

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.

Published: July 2022

Highly thermally conductive carbon fibers (CFs) have become an important material to meet the increasing demand for efficient heat dissipation. To date, high thermal conductivity has been only achieved in specific pitch-based CFs with high crystallinity. However, obtaining high graphitic crystallinity and high thermal conductivity beyond pitch-CFs remains a grand challenge. Here, a 2D-topology-seeded graphitization method is presented to mediate the topological incompatibility in graphitization by seeding 2D graphene oxide (GO) sheets into the polyacrylonitrile (PAN) precursor. Strong mechanical strength and high thermal conductivity up to 850 W m K are simultaneously realized, which are one order of magnitude higher in conductivity than commercial PAN-based CFs. The self-oxidation and seeded graphitization effect generate large crystallite size and high orientation to far exceed those of conventional CFs. Topologically seeded graphitization, verified in experiments and simulations, allows conversion of the non-graphitizable into graphitizable materials by incorporating 2D seeds. This method extends the preparation of highly thermally conductive CFs, which has great potential for lightweight thermal-management materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202201867DOI Listing

Publication Analysis

Top Keywords

highly thermally
12
thermally conductive
12
high thermal
12
thermal conductivity
12
2d-topology-seeded graphitization
8
conductive carbon
8
carbon fibers
8
seeded graphitization
8
high
6
cfs
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!