Camellia plants include more than 200 species of great diversity and immense economic, ornamental, and cultural values. We sequenced the transcriptomes of 116 Camellia plants from almost all sections of the genus Camellia. We constructed a pan-transcriptome of Camellia plants with 89 394 gene families and then resolved the phylogeny of genus Camellia based on 405 high-quality low-copy core genes. Most of the inferred relationships are well supported by multiple nuclear gene trees and morphological traits. We provide strong evidence that Camellia plants shared a recent whole genome duplication event, followed by large expansions of transcription factor families associated with stress resistance and secondary metabolism. Secondary metabolites, particularly those associated with tea quality such as catechins and caffeine, were preferentially heavily accumulated in the Camellia plants from section Thea. We thoroughly examined the expression patterns of hundreds of genes associated with tea quality, and found that some of them exhibited significantly high expression and correlations with secondary metabolite accumulations in Thea species. We also released a web-accessible database for efficient retrieval of Camellia transcriptomes. The reported transcriptome sequences and obtained novel findings will facilitate the efficient conservation and utilization of Camellia germplasm towards a breeding program for cultivated tea, camellia, and oil-tea plants.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.15799DOI Listing

Publication Analysis

Top Keywords

camellia plants
24
camellia
11
secondary metabolite
8
116 camellia
8
genus camellia
8
associated tea
8
tea quality
8
plants
7
comparative transcriptomic
4
transcriptomic analysis
4

Similar Publications

Introduction: Green tea is a medicinal beverage extracted from the plant Camellia sinensis. Antioxidants that exist naturally can be extracted as pure compounds from their parent materials for nutraceutical and medicinal applications. The present study aims to assess the antioxidant activity of Zinc oxide-titanium dioxide nano-composites (ZnO-TiO2 NCs) containing green tea extract.

View Article and Find Full Text PDF

Tea plant () is an important horticultural crop. The quality and productivity of tea plants is always threatened by various adverse environmental factors. Numerous studies have shown that intercropping tea plants with other plants can greatly improve the quality of their products.

View Article and Find Full Text PDF

Salt stress is one of the abiotic stresses affecting crop quality and yield, and the application of exogenous brassinosteroids (BRs) can be used in response to salt stress. However, the function of BR in tea plants under salt stress remains to be elucidated. This study investigated the effects of exogenous spraying of BR on the malondialdehyde, soluble sugar, soluble protein, and antioxidant enzyme activities in tea plants under salt stress and explored the expression changes in genes related to the synthesis pathways of proline and secondary metabolites (flavonoids and theanine).

View Article and Find Full Text PDF

A CCA1-like MYB subfamily member CsMYB128 participates in chilling sensitivity and cold tolerance in tea plants (Camellia sinensis).

Int J Biol Macromol

January 2025

Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China. Electronic address:

While flavonoid accumulation, light radiation, and cold stress are intrinsically connected in tea plants, yet the underlying mechanisms remain elusive. The circadian protein CCA1 and CCA1-like MYB transcription factors (TFs) play important roles in coordinating light and temperature signals in plant-environment interactions, their homologs in tea plants have not been addressed. Here we analyzed CsCCA1-like MYB family in tea genome and found one member, a circadian gene CsMYB128 responding to cold stress.

View Article and Find Full Text PDF

Background: Virus-induced gene silencing (VIGS) is a rapid and powerful method for gene functional analysis in plants that pose challenges in stable transformation. Numerous VIGS systems based on Agrobacterium infiltration has been widely developed for tender tissues of various plant species, yet none is available for recalcitrant perennial woody plants with firmly lignified capsules, such as tea oil camellia. Therefore, there is an urgent need for an efficient, robust, and cost-effective VIGS system for recalcitrant tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!