4-Chloro-17β-hydroxy-17α-methylandrosta-1,4-dien-3-one (CHClO), known as turinabol, is a synthetic anabolic-androgenic agent which belongs to the steroid class. Recrystallization from various solvents was performed and the following new solid forms of turinabol were obtained: the hemihydrate (CHClO·0.5HO), the anhydrous form (CHClO), the multicomponent acetic acid hydrate (2CHClO·CHO·HO) and the 2,2,2-trifluoroethanol hemisolvate (CHClO·0.5CHFO). The absolute structures were determined by single-crystal X-ray diffraction. The starting hemihydrate form contains one turinabol molecule in the asymmetric unit, while the others contain two molecules in the asymmetric unit. Structural features were investigated in terms of the conformational analysis of the steroid skeleton rings and intermolecular interactions. The magnitudes, the nature of the crystal structure energies and the intermolecular interactions were also evaluated. Complexation with β-cyclodextrin was performed and the obtained complex was investigated using powder X-ray diffraction, Fourier-transform infrared (FT-IR) spectroscopy and differential thermal analysis/thermogravimetric analysis (DTA/TGA).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S2053229622004004 | DOI Listing |
Langmuir
January 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
Nontraditional luminogens (NTLs) without large π-conjugated aromatic structures have attracted a great deal of attention in recent years. Developing NTLs with red-shifted and enhanced emissions remains a great challenge. In this work, we developed a NTL composed of three components, i.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
Developing versatile, scalable, and durable coatings that repel various matters in different service environments is of great importance for engineered materials applications but remains highly challenging. Here, the mesoporous silica microspheres (HMS) fabricated by the hard template method were utilized as micro-nanocontainers to encapsulate the hydrophobic agent of perfluorooctyltriethoxysilane (F13) and the corrosion inhibitor of benzotriazole (BTA), forming the functional microsphere of F-HMS(BTA). Moreover, the synthesized organosilane-modified silica sol adhesive (SMP) and F-HMS(BTA) were further employed as the binder and functional filler to construct a superhydrophobic self-healing coating of SMP@F-HMS(BTA) on various engineering metals through scalable spraying.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Shaanxi Key Laboratory of Fiber Reinforced Light-Weight Composites, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China.
Multicomponent Ti-containing ultra-high temperature ceramics (UHTCs) have emerged as more promising ablation-resistant materials than typical UHTCs for applications above 2000 °C. However, the underlying mechanism of Ti improving the ablation performance is still obscure. Here, (Hf,Zr,Ti)B coatings are fabricated by supersonic atmospheric plasma spraying, and the effects of Ti content on the ablation performance under an oxyacetylene flame are investigated.
View Article and Find Full Text PDFJ Chem Eng Data
January 2025
Institute of Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, Darmstadt D-64287, Germany.
The thermal behavior of -octanol and related ether alcohols has been studied by differential scanning calorimetry (DSC). The melting point, heat of fusion, and isobaric heat capacities of -octanol obtained from the DSC measurements are in good agreement with literature values. The ether alcohols display kinetic barriers for forming a solid phase during cooldown.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea.
Bioinspired coatings that mimic the adhesive properties of mussels have received considerable attention for surface modification applications. While polydopamine chemistry has been widely used to develop functional coatings, 3,4-dihydroxyphenyl-l-alanine (l-DOPA), a key component of mussel adhesive proteins, has received less attention because, compared to dopamine, it is relatively difficult to form effective coatings on solid substrates in mildly alkaline solutions. Although several methods have been explored to improve the efficiency of l-DOPA coatings, there is still a need to expand the l-DOPA-based surface chemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!