Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069363PMC
http://dx.doi.org/10.1002/advs.202201831DOI Listing

Publication Analysis

Top Keywords

self-powered artificial
4
artificial mechanoreceptor
4
mechanoreceptor based
4
based triboelectrification
4
triboelectrification neuromorphic
4
neuromorphic tactile
4
tactile system
4
self-powered
1
mechanoreceptor
1
based
1

Similar Publications

Autonomous Self-Healing Magnetoelectric I-Skin from Self-Bonded Deep Eutectic Polymer.

Small Methods

January 2025

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.

Next-generation ionic skin (i-skin) should be self-healing and self-powered, promoting its development toward lightweight, miniaturization, compact, and portable designs. Previously reported self-powered i-skin mostly either lack the ability to self-repair damaged parts or only have self-healing capabilities some components, falling short of achieving complete device self-healability. In this work, a self-bonding strategy is presented to obtain an all-polymerizable deep eutectic solvent (PDES) magnetoelectric i-skin (MIS) that simultaneously achieves self-powering and full-device autonomous self-healability.

View Article and Find Full Text PDF

Ferroelectric/Electric-Double-Layer-Modulated Synaptic Thin Film Transistors toward an Artificial Tactile Perception System.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China.

Tactile sensation and recognition in the human brain are indispensable for interaction between the human body and the surrounding environment. It is quite significant for intelligent robots to simulate human perception and decision-making functions in a more human-like way to perform complex tasks. A combination of tactile piezoelectric sensors with neuromorphic transistors provides an alternative way to achieve perception and cognition functions for intelligent robots in human-machine interaction scenarios.

View Article and Find Full Text PDF

Human-machine interfaces and wearable electronics, as fundamentals to achieve human-machine interactions, are becoming increasingly essential in the era of the Internet of Things. However, contemporary wearable sensors based on resistive and capacitive mechanisms demand an external power, impeding them from extensive and diverse deployment. Herein, a smart wearable system is developed encompassing five arch-structured self-powered triboelectric sensors, a five-channel data acquisition unit to collect finger bending signals, and an artificial intelligence (AI) methodology, specifically a long short-term memory (LSTM) network, to recognize signal patterns.

View Article and Find Full Text PDF

Conductive hydrogels: intelligent dressings for monitoring and healing chronic wounds.

Regen Biomater

November 2024

Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China.

Conductive hydrogels (CHs) represent a burgeoning class of intelligent wound dressings, providing innovative strategies for chronic wound repair and monitoring. Notably, CHs excel in promoting cell migration and proliferation, exhibit powerful antibacterial and anti-inflammatory properties, and enhance collagen deposition and angiogenesis. These capabilities, combined with real-time monitoring functions, play a pivotal role in accelerating collagen synthesis, angiogenesis and continuous wound surveillance.

View Article and Find Full Text PDF

Leech-Inspired Amphibious Soft Robot Driven by High-Voltage Triboelectricity.

Adv Mater

January 2025

School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, P. R. China.

Leech locomotion, characterized by alternating sucker attachment and body contraction provides high adaptability and stability on complex terrains. Herein, a leech-inspired triboelectric soft robot is proposed for the first time, capable of amphibious movement, climbing, and load-carrying crawling. A high-performance triboelectric bionic robot system is developed to drive and control electro-responsive soft robots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!