Background: Mechanical stimuli induce the release of adenosine triphosphate into the extracellular environment by human periodontal ligament cells (hPDLCs). Extracellular adenosine triphosphate (eATP) plays the role in both inflammation and osteogenic differentiation. eATP involves in immunosuppressive action by increasing immunosuppressive molecules IDO and IFNγ expression on immune cells. However, the role of eATP on the immunomodulation of hPDLCs remains unclear. This study aimed to examine the effects of eATP on the IDO and IFNγ expression of hPDLCs and the participation of purinergic P receptors in this phenomenon.
Methods: hPDLCs were treated with eATP. The mRNA and protein expression of indoleamine-pyrrole 2,3-dioxygenase (IDO) and interferon-gamma (IFNγ) were determined. The role of the purinergic P receptor was determined using calcium chelator (EGTA) and PKC inhibitor (PKCi). Chemical inhibitors (KN62 and BBG), small interfering RNA (siRNA), and P X receptor agonist (BzATP) were used to confirm the involvement of P X receptors on IDO and IFNγ induction by hPDLCs.
Results: eATP significantly enhanced mRNA expression of IDO and IFNγ. Moreover, eATP increased kynurenine which is the active metabolite of tryptophan breakdown catalyzed by the IDO enzyme and significantly induced IFNγ protein expression. EGTA and PKCi reduced eATP-induced IDO and IFNγ expressions by hPDLCs, confirming the role of calcium signaling. Chemical P X inhibitors (KN62 and BBG) and siRNA targeting the P X receptor significantly inhibited the eATP-induced IDO and IFNγ production. Correspondingly, BzATP markedly increased IDO and IFNγ expression.
Conclusion: eATP induced immunosuppressive function of hPDLCs by promoting IDO and IFNγ production via P X receptor signaling. eATP may become a promising target for periodontal regeneration by modulating immune response and further triggering tissue healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jre.12997 | DOI Listing |
J Funct Biomater
December 2024
Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
CY1-4, 9-nitropyridine [2',3':4,5] pyrimido [1,2-α] indole -5,11- dione, is an indoleamine 2,3-dioxygenase (IDO) inhibitor and a poorly water-soluble substance. It is very important to increase the solubility of CY1-4 to improve its bioavailability and therapeutic effect. In this study, the mesoporous silica nano-skeleton carrier material Sylysia was selected as the carrier to load CY1-4, and then the CY1-4 nano-skeleton drug delivery system (MSNM@CY1-4) was prepared by coating the hydrophilic polymer material Hydroxypropyl methylcellulose (HPMC) and the lipid material Distearoylphosphatidyl-ethanolamine-poly(ethylene glycol) (DSPE-PEG) to improve the anti-tumor effect of CY1-4.
View Article and Find Full Text PDFBMC Musculoskelet Disord
December 2024
Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, 8 Showa-ku, Nagoya, Japan.
The growth of periacetabular osteophytes with developmental dysplasia of the hip (DDH) remains unclear. This study aimed to perform a three-dimensional assessment of periacetabular osteophytes and the effects of superiorization (SP) and lateralization (LT) of the femoral head on osteophyte formation. Female (n = 105) with unilateral hip osteoarthritis due to DDH who underwent total hip arthroplasty between 2016 and 2022 were included.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Chemistry, University of Georgia, Athens, GA 30602. Electronic address:
Pyrrolnitrin, a potent antifungal compound originally discovered in Pseudomonas strains, is biosynthesized through a secondary metabolic pathway involving four key enzymes. Central to this process is PrnB, a heme enzyme that catalyzes the complex transformation of 7-Cl-L-tryptophan. Despite its structural similarity to indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) and its classification within the histidine-ligated heme-dependent aromatic oxygenase (HDAO) superfamily, PrnB has remained relatively unexplored due to challenges in reconstituting its in vitro activity.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
December 2024
Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
To evaluate dual-layer dual-energy computed tomography (dlDECT)-based characterization of thrombus composition for differentiation of acute pulmonary embolism (PE) and chronic thromboembolic pulmonary hypertension (CTEPH). This retrospective single center cohort study included 49 patients with acute PE and 33 patients with CTEPH who underwent CT pulmonary angiography on a dlDECT from 06/2016 to 06/2022. Conventional images), material specific images (virtual non-contrast [VNC], iodine density overlay [IDO], electron density [ED]), and virtual monoenergetic images (VMI) were analyzed.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
Paclitaxel (PTX) is a first-line chemotherapeutic drug for non-small cell lung cancer (NSCLC) but it can induce indoleamine 2,3-dioxygenase (IDO) activation, which severely lowers down its immuno-chemotherapeutic effect. To address this issue, a smart peptide hydrogelator Nap-Phe-Phe-Phe-Lys-Ser-Thr-Gly-Gly-Lys-Ala-Pro-Arg-OH (Nap-T), which co-assembles with PTX and an IDO inhibitor GDC0919 to form a hydrogel GP@Gel Nap-T, is rationally designed. Upon specific phosphorylation by pyruvate kinase M2 (PKM2), an overexpressed biomarker of NSCLC, Nap-T is gradually converted to Nap-Phe-Phe-Phe-Lys-Ser-Thr(HPO)-Gly-Gly-Lys-Ala-Pro-Arg-OH (Nap-Tp), leading to dehydrogelation and sustained release of PTX and GDC0919 within NSCLC tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!