Electrospinning is a cost-effective technique for synthesizing polymeric fibers with nanometers diameters. Electrospun nanofibers act as ideal scaffolds for tissue engineering and drug delivery systems because they can mimic the functions of native extracellular matrices. However, it is difficult to gathering nanofibers with simple design and reasonable price device. This study presents a cost effective and safe electrospinning system with similar capabilities to standard electrospinning device. As standard current electrospinning system consists of three constructed parts, a hand-constructed electrical power supply to provide a voltage source direct current (DC), a low cost three-dimensional (3D) printed syringe pump and handmade collectors. The device components are entirely constructed off-the-shelf components, and structural elements are 3D printer. The electrospinning process was carried out using PLA materials. The general parameters in the production process are resolution of the spraying rate and the power supply provides electricity in kilovolt. The prototype is an affordable device; its cost is around 99.5% less than the laboratory commercial devices. The average diameters of the fibers were determined from SEM micrographs with the aid of Image J software, which shows that the electrospinning device successfully produces fibres on a nanometer scale. Henceforth, this project can help educational institutions to have such electrospinning system with ultra-low cost comparing with readymade systems in the market.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058581PMC
http://dx.doi.org/10.1016/j.ohx.2021.e00250DOI Listing

Publication Analysis

Top Keywords

electrospinning device
12
electrospinning system
12
electrospinning
8
power supply
8
device
6
designing integrated
4
integrated low-cost
4
low-cost electrospinning
4
device nanofibrous
4
nanofibrous scaffold
4

Similar Publications

- The objective of the study was to tackle the recurrence of PCa post-surgery and to re-sensitize the DTX-resistant PC-3 cells to chemo-therapy using NIC. Prolonged docetaxel (DTX) therapy leads to the emergence of chemo-resistance by overexpression of PI3K-AKT pathway in PCa along with tumor recurrence post-surgery. Suppression of this pathway could be essential in improving the anticancer activity of DTX and re-sensitizing the resistant cells.

View Article and Find Full Text PDF

In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.

View Article and Find Full Text PDF

This study investigates the influence of needleless versus needle-based electrospinning methods on the fiber diameter of polyamide 6 (PA6) nanofibers under comparable conditions, with an emphasis on potential pharmaceutical applications. Additionally, it examines how varying solvent systems impact fiber diameter specifically in needleless electrospinning. In this study, it was found that fibers produced by the needleless method were thicker compared to those produced by the needle-based method, a trend attributable to the specific solution characteristics and parameter settings unique to this study.

View Article and Find Full Text PDF

Design and Ex Vivo Evaluation of a PCLA Degradable Device To Improve Annulus Fibrosus Repair.

ACS Appl Bio Mater

January 2025

Polymers for Health and Biomaterials, IBMM UMR 5247, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France.

With a prevalence of over 90% in people over 50, intervertebral disc degeneration (IVDD) is a major health concern. This weakening of the intervertebral discs can lead to herniation, where the nucleus pulpus (NP) leaks through the surrounding Annulus Fibrosus (AF). Considering the limited self-healing capacity of AF tissue, an implant is needed to restore its architecture and function.

View Article and Find Full Text PDF

Establishing a Three-Dimensional Coculture Module of Epithelial Cells Using Nanofibrous Membranes.

J Vis Exp

December 2024

Department of Pharmacology, School of Medicine, Ajou University; 3D Immune System Imaging Core Center, Ajou University;

Technical hurdles in a culture of epithelial cells include dedifferentiation and loss of function. Biomimetic three-dimensional (3D) cell culture methods can enhance cell culture efficiency. This study introduces an advanced two-layered culture system intended to cultivate epithelial cells as tissue-like layers with the culture of fibroblasts within a 3D environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!