Smurf2 suppresses the metastasis of hepatocellular carcinoma via ubiquitin degradation of Smad2.

Open Med (Wars)

Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Xuhui District, Shanghai, P. R. China.

Published: February 2022

Purpose: Smurf2, one of C2-WW-HECT domain E3 ubiquitin ligases, is closely related to the development and progression in different cancer types, including hepatocellular carcinoma (HCC). This study aims to illustrate the expression and molecular mechanism of Smurf2 in regulating the progression of HCC.

Methods: The expression of Smurf2 in human HCC and adjacent non-tumor liver specimens was detected using tissue microarray studies from 220 HCC patients who underwent curative resection. The relationships of Smurf2 and HCC progression and survival were analyzed using the chi-square test, Kaplan-Meier analysis, and Cox proportional hazards model. For Smurf2 was low expression in HCC cell lines, Smurf2 overexpression cell lines were established. The effect of Smurf2 on cell proliferation and migration was detected by Cell Counting Kit-8 and colony formation assay, and the epithelial-mesenchymal transition (EMT) markers and its transcription factors were tested by immunoblotting. The interaction and ubiquitination of Smad2 by Smurf2 were detected by co-immunoprecipitation and immunoprecipitation assay. Finally, the effect of Smurf2 on HCC was verified using the mouse lung metastasis model.

Results: Smurf2 was downregulated in HCC tissues compared to that of corresponding non-tumor liver specimens. The low expression of Smurf2 in HCC was significantly associated with macrovascular or microvascular tumor thrombus and the impairment of overall survival and disease-free survival. and analysis showed that Smurf2 overexpression decreased the EMT potential of HCC cells by promoting the ubiquitination of Smad2 via the proteasome-dependent degradation pathway.

Conclusion: The expression of Smurf2 was downregulated in HCC specimens and affected the survival of patients. Smurf2 inhibited the EMT of HCC by enhancing Smad2 ubiquitin-dependent proteasome degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8874264PMC
http://dx.doi.org/10.1515/med-2022-0437DOI Listing

Publication Analysis

Top Keywords

smurf2
15
expression smurf2
12
smurf2 hcc
12
hcc
11
hepatocellular carcinoma
8
non-tumor liver
8
liver specimens
8
low expression
8
cell lines
8
smurf2 overexpression
8

Similar Publications

Targeting the SMURF2-HIF1α axis: a new frontier in cancer therapy.

Front Oncol

December 2024

Research & Development, SMURF-Therapeutics, Inc., Providence, RI, United States.

The SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2) has emerged as a critical regulator in cancer biology, modulating the stability of Hypoxia-Inducible Factor 1-alpha (HIF1α) and influencing a network of hypoxia-driven pathways within the tumor microenvironment (TME). SMURF2 targets HIF1α for ubiquitination and subsequent proteasomal degradation, disrupting hypoxic responses that promote cancer cell survival, metabolic reprogramming, angiogenesis, and resistance to therapy. Beyond its role in HIF1α regulation, SMURF2 exerts extensive control over cellular processes central to tumor progression, including chromatin remodeling, DNA damage repair, ferroptosis, and cellular stress responses.

View Article and Find Full Text PDF

The transcription factor GLI1 is the main and final effector of the Hedgehog signaling pathway, which is involved in embryonic development, cell proliferation and stemness. Whether activated through canonical or non-canonical mechanisms, GLI1 aberrant activity is associated with Hedgehog-dependent cancers, including medulloblastoma, as well as other tumoral contexts. Notwithstanding a growing body of evidence, which have highlighted the potential role of post translational modifications of GLI1, the complex mechanisms modulating GLI1 stability and activity have not been fully elucidated.

View Article and Find Full Text PDF

As delayed parenthood becomes more prevalent, understanding age-related testosterone decline and its impact on male fertility has gained importance. However, molecular mechanisms concerning testicular aging remain largely undiscovered. Our study highlights that miR-143-3p, present in aging Sertoli cells (SCs), is loaded into extracellular vesicles (EVs), affecting Leydig cells (LCs) and germ cells, thus disrupting testicular tissue homeostasis and spermatogenesis.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction is linked to myocardial ischemia-reperfusion (I/R) injury. Checkpoint kinase 1 (CHK1) could facilitate cardiomyocyte proliferation, however, its role on mitochondrial function in I/R injury remains unknown.

Methods: To investigate the role of CHK1 on mitochondrial function following I/R injury, cardiomyocyte-specific knockout/overexpression mouse models were generated.

View Article and Find Full Text PDF

Alizarin attenuates oxidative stress-induced mitochondrial damage in vascular dementia rats by promoting TRPM2 ubiquitination and proteasomal degradation via Smurf2.

Phytomedicine

December 2024

Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China. Electronic address:

Background: Alizarin (AZ) is a natural anthraquinone with anti-inflammatory and moderate antioxidant properties.

Purpose: In this study, we characterized the role of AZ in a rat model of vascular dementia (VaD) and explored its underlying mechanisms.

Methods: VaD was induced by bilateral common carotid artery occlusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!