is a pioneer commensal species of dental biofilms, abundant in different oral sites and commonly associated with opportunist cardiovascular infections. In this study, we addressed intra-species functional diversity to better understand the commensal and pathogenic lifestyles. Multiple phenotypes were screened in nine strains isolated from dental biofilms or from the bloodstream to identify conserved and strain-specific functions involved in biofilm formation and/or persistence in oral and cardiovascular tissues. Strain phenotypes of biofilm maturation were independent of biofilm initiation phenotypes, and significantly influenced by human saliva and by aggregation mediated by sucrose-derived exopolysaccharides (EPS). The production of HO was conserved in most strains, and consistent with variations in extracellular DNA (eDNA) production observed in few strains. The diversity in complement C3b deposition correlated with the rates of opsonophagocytosis by human PMN and was influenced by culture medium and sucrose-derived EPS in a strain-specific fashion. Differences in C3b deposition correlated with strain binding to recognition proteins of the classical pathway, C1q and serum amyloid protein (SAP). Importantly, differences in strain invasiveness into primary human coronary artery endothelial cells (HCAEC) were significantly associated with C3b binding, and in a lesser extent, with binding to host glycoproteins (such as fibrinogen, plasminogen, fibronectin, and collagen). Thus, by identifying conserved and strain-specific phenotypes involved in host persistence and systemic virulence, this study indicates potential new functions involved in systemic virulence and highlights the need of including a wider panel of strains in molecular studies to understand biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058168PMC
http://dx.doi.org/10.3389/fmicb.2022.875581DOI Listing

Publication Analysis

Top Keywords

systemic virulence
12
host persistence
8
persistence systemic
8
dental biofilms
8
conserved strain-specific
8
functions involved
8
c3b deposition
8
deposition correlated
8
strains
5
diversity phenotypes
4

Similar Publications

In November 2020, a volunteer group reported an outbreak of an infectious disease with a high fatality rate and flu-like symptoms among stray cats in Aoshima, a remote island in Ehime, Japan. Nine adult cats with severe symptoms were hospitalized. Feline calicivirus (FCV) was isolated from pharyngeal swabs of six hospitalized cats.

View Article and Find Full Text PDF

Enhanced virulence of Acinetobacter johnsonii at low temperatures induces acute immune response and systemic infection in American bullfrogs (Aquarana catesbeiana).

Vet Microbiol

January 2025

Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China. Electronic address:

Acinetobacter johnsonii is a denitrifying bacterium commonly used as an environmental probiotic in wastewater treatment. However, research on its potential pathogenicity to animals is limited. During an epidemiological survey conducted from 2022 to 2024 at bullfrog farms in Guangdong Province, China, multiple strains were isolated from diseased bullfrogs during the low-temperature season.

View Article and Find Full Text PDF

We examine disease-specific and cross-disease functions of the human gut microbiome by colonizing germ-free mice, at risk for inflammatory arthritis, colitis, or neuroinflammation, with over 100 human fecal microbiomes from subjects with rheumatoid arthritis, ankylosing spondylitis, multiple sclerosis, ulcerative colitis, Crohn's disease, or colorectal cancer. We find common inflammatory phenotypes driven by microbiomes from individuals with intestinal inflammation or inflammatory arthritis, as well as distinct functions specific to microbiomes from multiple sclerosis patients. Inflammatory disease in mice colonized with human microbiomes correlated with systemic inflammation, measured by C-reactive protein, in the human donors.

View Article and Find Full Text PDF

A comprehensive retrospect on the current perspectives and future prospects of pneumoconiosis.

Front Public Health

January 2025

Environmental Exposures Vascular Disease Institute, Shanxi Medical University, Taiyuan, Shanxi, China.

Pneumoconiosis is a widespread occupational pulmonary disease caused by inhalation and retention of dust particles in the lungs, is characterized by chronic pulmonary inflammation and progressive fibrosis, potentially leading to respiratory and/or heart failure. Workers exposed to dust, such as coal miners, foundry workers, and construction workers, are at risk of pneumoconiosis. This review synthesizes the international and national classifications, epidemiological characteristics, strategies for prevention, clinical manifestations, diagnosis, pathogenesis, and treatment of pneumoconiosis.

View Article and Find Full Text PDF

, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of remains limited. In this study, plants exhibiting symptoms such as leaf yellowing, mottled leaves, and vein chlorosis were collected and subjected to RNA sequencing to identify potential viral pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!