Cardiac Remodeling in Heart Failure: Role of Pyroptosis and Its Therapeutic Implications.

Front Cardiovasc Med

Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.

Published: April 2022

Pyroptosis is a kind of programmed cell death closely related to inflammation. The pathways that mediate pyroptosis can be divided into the Caspase-1-dependent canonical pathway and the Caspase4/5/11-dependent non-canonical pathway. The most significant difference from other cell death is that pyroptosis rapidly causes rupture of the plasma membrane, cell expansion, dissolution and rupture of the cell membrane, the release of cell contents and a large number of inflammatory factors, and send pro-inflammatory signals to adjacent cells, recruit inflammatory cells and induce inflammatory responses. Cardiac remodeling is the basic mechanism of heart failure (HF) and the core of pathophysiological research on the underlying mechanism. A large number of studies have shown that pyroptosis can cause cardiac fibrosis, cardiac hypertrophy, cardiomyocytes death, myocardial dysfunction, excessive inflammation, and cardiac remodeling. Therefore, targeting pyroptosis has a good prospect in improving cardiac remodeling in HF. In this review, the basic molecular mechanism of pyroptosis is summarized, the relationship between pyroptosis and cardiac remodeling in HF is analyzed in-depth, and the potential therapy of targeting pyroptosis to improve adverse cardiac remodeling in HF is discussed, providing some ideas for improving the study of adverse cardiac remodeling in HF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058112PMC
http://dx.doi.org/10.3389/fcvm.2022.870924DOI Listing

Publication Analysis

Top Keywords

cardiac remodeling
28
cardiac
9
pyroptosis
9
heart failure
8
cell death
8
large number
8
pyroptosis cardiac
8
targeting pyroptosis
8
adverse cardiac
8
remodeling
6

Similar Publications

Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics.

View Article and Find Full Text PDF

Background: Left ventricular (LV) myocardial contraction patterns can be assessed using LV mechanical dispersion (LVMD), a parameter closely associated with electrical activation patterns. Despite its potential clinical significance, limited research has been conducted on LVMD following myocardial infarction (MI). This study aims to evaluate the predictive value of cardiac magnetic resonance (CMR)-derived LVMD for adverse clinical outcomes and to explore its correlation with myocardial scar heterogeneity.

View Article and Find Full Text PDF

Targeted Mitochondrial Function for Cardiac Fibrosis: an Epigenetic Perspective.

Free Radic Biol Med

January 2025

Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601. Electronic address:

Mitochondria, commonly referred to as "energy factories"of cells, play a crucial role in the function and survival of cardiomyocytes. However, as research on cardiac fibrosis has advanced, mitochondrial dysfunction(including changes in energy metabolism, calcium ion imbalance, increased oxidative stress, and apoptosis)is now recognized as a significant pathophysiological pathway involved in cardiac remodeling and progression, which also negatively affects the function and structure of the heart. In recent years, research focusing on targeting mitochondria has gained significant attention, offering new approaches for treating cardiac fibrosis.

View Article and Find Full Text PDF

Background: Diastolic wall strain (DWS), also referred to as right ventricular (RV) dysfunction, is a significant predictor of pulmonary embolism (PE) and heart failure (HF). Rooted in linear elastic theory, DWS reflects decreased wall thinning during diastole, indicating reduced left ventricular (LV) compliance and increased diastolic stiffness. Elevated diastolic stiffness is associated with worse outcomes, particularly in PE and HF with preserved ejection fraction (HFpEF).

View Article and Find Full Text PDF

Robust preclinical models of asymmetric ventricular loading in late gestation reflecting conditions such as hypoplastic left heart syndrome are lacking. We characterized the morphometry and microvascular function of the hypoplastic left ventricle (LV) and remaining right ventricle (RV) in a sham-controlled late gestation fetal lamb model of impaired left ventricular inflow (ILVI). Singleton fetuses were instrumented at ∼120 days gestational age (dGA; term is ∼147 days) with vascular catheters, an aortic flow probe and a deflated left atrial balloon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!